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Using Neural Data to Test a Theory of Investor
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ABSTRACT

We conduct a study in which subjects trade stocks in an experimental market while
we measure their brain activity using functional magnetic resonance imaging. All of
the subjects trade in a suboptimal way. We use the neural data to test a “realization
utility” explanation for their behavior. We find that activity in two areas of the brain
that are important for economic decision-making exhibit activity consistent with the
predictions of realization utility. These results provide support for the realization
utility model. More generally, they demonstrate that neural data can be helpful in
testing models of investor behavior.

OVER THE PAST 20 years, economists have accumulated a large amount of evi-
dence on how individual investors manage their financial portfolios over time.
Some of this evidence is puzzling, in the sense that it is hard to reconcile with
the simplest models of rational trading (Barberis and Thaler (2003), Campbell
(2006)). Theorists have responded to this challenge by constructing new mod-
els of investor behavior. Empiricists, in turn, have started testing these newly
developed models.

Most of the empirical work that tests theories of investor behavior uses field
data (Barber and Odean (2000), Barber and Odean (2001), Choi et al. (2009),
Grinblatt and Keloharju (2009)). A smaller set of studies uses data from labora-
tory experiments. The advantage of experiments is that they give researchers
a large degree of control over the trading and information environment, which
can make it easier to tease theories apart (Plott and Sunder (1988), Camerer
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and Weigelt (1991, 1993), Weber and Camerer (1998), Bossaerts and Plott
(2004), Bossaerts, Plott, and Zame (2007)).

In this paper, we argue that another kind of data, namely, measures of neu-
ral activity taken using functional magnetic resonance imaging (fMRI) while
subjects trade in an experimental stock market, can also be useful in test-
ing theories of investor behavior. To demonstrate this, we use neural data to
test the “realization utility” theory of trading, a theory that has been used to
address several facts about investor trading behavior, including the so-called
disposition effect.

The disposition effect is the robust empirical fact that individual investors
have a greater propensity to sell stocks trading at a gain relative to purchase
price than stocks trading at a loss. This fact has attracted considerable at-
tention because it has proven hard to explain using simple rational models of
trading. This impasse has motivated the development of competing alternative
theories, both rational and behavioral (Shefrin and Statman (1985), Odean
(1998), Barberis and Xiong (2009), Kaustia (2010)). One of these, the realiza-
tion utility model (Shefrin and Statman (1985), Barberis and Xiong (2012),
Ingersoll and Jin (2013)), is based on the assumption that, in addition to de-
riving utility from consumption, investors derive utility directly from realizing
gains and losses on the sale of risky assets that they own. For example, if an
investor realizes a gain (e.g., by buying a stock at $20 and selling it at $40), he
receives a positive burst of utility proportional to the capital gain; in contrast,
if he realizes a loss (e.g., by buying a stock at $20 and selling it at $10), he
receives a negative burst of utility proportional to the realized loss. In combi-
nation with a sufficiently high time discount rate, realization utility will lead
investors to exhibit a disposition effect (Barberis and Xiong (2012)).

Testing a theory such as realization utility is difficult because its predictions
about investor behavior are similar, on many dimensions, to those of other theo-
ries (but see Weber and Camerer (1998)). Furthermore, using data on behavior
alone, it is extremely difficult to carry out direct tests of the computations driv-
ing behavior (e.g., tests of whether, when thinking about selling, investors are
tracking the capital gains they could potentially realize). However, as we show
in this paper, a combination of neural measurement and careful experimental
design does allow for direct tests of the extent to which the computations made
by the brain at the time of decision-making are consistent with the mechanisms
posited by different models.

Specifically, in this paper we describe the results of an fMRI study designed
to test the hypothesis that, while trading in an experimental stock market,
subjects are influenced by realization utility, and that this is associated with
trading patterns consistent with the disposition effect. The experiment allows
us to test several behavioral and neural predictions of the realization utility
hypothesis.1

1 We use the word “behavioral” in two different senses. Most of the time, as in the last sentence
of this paragraph, we take it to mean “pertaining to behavior.” Occasionally, we take it to mean
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Behaviorally, we find that the average subject in our experiment exhibits a
strong and significant disposition effect. This result stands in sharp contrast to
the prediction of a simple rational trading model in which subjects maximize
the expected value of final earnings. The reason is that our experimental design
induces positive autocorrelation in stock price changes, which in turn implies
that a risk-neutral rational trader would sell losing stocks more often than
winning stocks, thereby exhibiting the opposite of the disposition effect. The
strong disposition effect displayed by our subjects is, however, consistent with
the realization utility model.

When taken literally as a description of the decision-making process, the
realization utility model makes several predictions about the neural compu-
tations that should be observed at different points in time. We describe these
predictions in detail in the main body of the paper, but summarize them briefly
here.

First, the realization utility model predicts that, at the moment when a
subject is making a decision as to whether to sell a stock, neural activity in
areas of the brain associated with encoding the value of potential actions at
the time of a decision should be proportional to the capital gain that would
be realized by the trade (i.e., to the difference between the sale price and the
purchase price). In particular, the model implies that, at the time of decision,
activity in the ventromedial prefrontal cortex (vmPFC), an area of the brain
that has been reliably shown to be involved in the computation of the value of
the available options, should be positively correlated with the capital gain or
loss associated with selling a stock.

Second, the realization utility model predicts that a subject whose vmPFC
activity at the time of a sell decision is particularly correlated with the potential
capital gain or loss—in other words, a subject who is particularly influenced
by realization utility—will exhibit a stronger disposition effect. Across individ-
uals, then, the strength of the disposition effect should be correlated with the
strength of the realization utility signal in the vmPFC.

Third, the realization utility hypothesis posits that realizing a capital gain
generates a positive burst of utility, while realizing a capital loss generates a
negative one. This predicts that, controlling for the size of the capital gain or
loss, and regardless of the precise timing of the utility burst, realizing a capital
gain should increase activity in certain areas of the ventral striatum (vSt),
while realizing a capital loss should decrease activity in these areas. This is
because the vSt is known to encode so-called reward prediction errors, which
measure the change in the expected net present value of lifetime utility induced
by new information or changes in the environment. Since selling a stock at a
gain generates a utility burst, it also generates a change in the expected net
present value of utility, one that should be reflected in the striatum at the
moment of sale.

“less than fully rational” or “psychological,” as is common in the social sciences. It will be clear
from the context which of the two meanings is intended.
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Our fMRI measurements reveal patterns of neural activity that are largely
consistent with the three neural predictions. These results provide novel and
strong support for the mechanisms at work in the realization utility model.
Furthermore, to our knowledge, they also provide the first example of how
neural evidence can be used to test economic models of financial decision-
making. We emphasize that the results do not imply that realization utility is
the only force driving investor behavior, even in the context of our experiment.
However, the fact that activity in the decision-making circuitry corresponds to
some of the computations hypothesized by the realization utility model provides
novel evidence in support of the model. It also suggests that computations of
this kind may, in part, be driving the real-world transactions of individual
investors.

Using neural data to test an economic model is an unusual exercise in the
field of economics. A common view in the field is that models make “as if”
predictions about behavior, and should not be taken as literal descriptions
of how decisions are actually made (Gul and Pesendorfer (2008), Bernheim
(2009)). In contrast to this view, we adopt a neuroeconomic approach. According
to this approach, knowledge about the computational processes that the brain
uses to make decisions should be of central interest to economists because,
since these processes describe the actual determinants of observed behavior,
they provide valuable insights into the drivers of economic activity (Camerer,
Loewenstein, and Prelec (2005), Camerer (2007), Rustichini (2009), Glimcher
(2010), Fehr and Rangel (2011)).

Our study contributes to the nascent field of neurofinance, which seeks to
characterize the computations undertaken by the brain to make financial de-
cisions, and to understand how these computations map to behavior. Several
early contributions are worth highlighting. Lo and Repin (2002) investigate
the extent to which professional experience affects the emotional arousal of
traders in stressful situations, where arousal is measured using skin conduc-
tance responses and changes in blood pressure. Kuhnen and Knutson (2005)
use fMRI to measure neural responses during a simple investment task and
find that activity in brain regions associated with emotional processing, such
as the nucleus accumbens and the insula, predicts subjects’ willingness to take
risks. Knutson et al. (2008) take these ideas further by showing that exoge-
nous emotional cues (e.g., erotic pictures) can affect investment behavior, and
that these cues increase activity in the same brain regions as in their previ-
ous study. More recently, Bruguier, Quartz, and Bossaerts (2010) show that
fMRI measures of the extent to which subjects activate brain areas associated
with concrete cognitive skills, such as the ability to predict another person’s
state of mind, might be useful in identifying which subjects would be successful
traders, while Wunderlich et al. (2011) look at how the brain tracks correlation
during an attempt to optimally hedge two sources of risk. Finally, De Martino
et al. (2013) show that fMRI measures of activity in valuation and mentaliz-
ing (theory of mind) regions of the brain are associated with the propensity to
buy during experimental price bubbles. Our paper contributes to this litera-
ture by showing that a combination of fMRI neural measurements and careful
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experimental design can be used to test specific economic theories of finan-
cial decision-making. More broadly, our work also contributes to the rapidly
growing field of neuroeconomics, which seeks to characterize the computations
made by the brain in different types of decisions, ranging from simple choices
to choices involving risk, self-control, and complex social interactions.2

The paper is organized as follows. Section I presents background informa-
tion on the disposition effect and realization utility. Section II describes the
experimental design and the predictions of the realization utility hypothesis.
Section III provides a detailed description of how fMRI can be used to test the
neural predictions. Section IV presents the results. Section V concludes.

I. Background: The Disposition Effect and the Realization
Utility Model

Using an argument based on Kahneman and Tversky’s (1979) prospect the-
ory, Shefrin and Statman (1985) predict that individual investors will have a
greater propensity to sell stocks trading at a gain relative to purchase price,
rather than stocks trading at a loss. They label this the “disposition effect” and
provide some evidence for it using records of investor trading. More detailed
evidence for the effect is presented by Odean (1998), who analyzes the trad-
ing activity from 1987 to 1993 of 10,000 households with accounts at a large
discount brokerage firm. The phenomenon has now been replicated in several
other large databases of trading behavior.3

It is useful to explain Odean’s (1998) methodology in more detail because
we adopt a similar methodology in our own analysis. For any day on which
an investor in Odean’s (1998) sample sells shares of a stock, each stock in the
investor’s portfolio on that day is assigned to one of four categories. A stock is
counted as a “realized gain” (“realized loss”) if it is sold on that day at a price
that is higher (lower) than the average price at which the investor purchased
the shares. A stock is counted as a “paper gain” (“paper loss”) if its price is
higher (lower) than its average purchase price, but it is not sold on that day.
From the total number of realized gains and paper gains across all accounts
over the entire sample, Odean (1998) computes the proportion of gains realized
(PGR):

PGR = # of realized gains
# of realized gains + # of paper gains

. (1)

2 For recent reviews, see Fehr and Camerer (2007), Glimcher et al. (2008), Rangel, Camerer,
and Montague (2008), Bossaerts (2009), Kable and Glimcher (2009), Rangel and Hare (2010), Fehr
and Rangel (2011), and Rushworth et al. (2011).

3 See, for example, Genesove and Mayer (2001), Grinblatt and Keloharju (2001), Feng and
Seasholes (2005), Frazzini (2006), and Jin and Scherbina (2011).
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In words, PGR computes the number of gains realized as a fraction of the num-
ber of gains that could have been realized. A similar ratio, PLR, is computed
for losses:

PLR = # of realized losses
# of realized losses + # of paper losses

. (2)

The disposition effect is the empirical fact that PGR is significantly greater
than PLR. Odean (1998) reports PGR = 0.148 and PLR = 0.098.

While the disposition effect is a robust empirical phenomenon, its causes
remain unclear. In particular, traditional rational models of trading have had
trouble capturing important features of the data. Consider, for example, an
information model in which investors sell stocks with paper gains because they
have private information that these stocks will subsequently do poorly, and
hold on to stocks with paper losses because they have private information that
these stocks will rebound. This hypothesis is inconsistent with Odean’s finding
that the average return of the prior winners that investors sell is 3.4% higher,
over the next year, than the average return of the prior losers they hold on
to. Another approach involves taking into account the favorable treatment of
losses by the tax code. However, this also fails to explain the disposition effect
because it predicts a greater propensity to sell stocks associated with paper
losses. Another model attributes the disposition effect to portfolio rebalancing
of the kind predicted by a framework with power utility preferences and i.i.d.
returns. However, in this framework, rebalancing is the “smart” thing to do,
which implies that we should observe a stronger disposition effect for more
sophisticated investors. In contrast to this prediction, the data show that it is
less sophisticated investors who exhibit a stronger disposition effect (Dhar and
Zhu (2006)).

Researchers have also proposed behavioral economics models of the dispo-
sition effect that can explain some of the empirical patterns that the rational
frameworks have struggled to capture. One popular model assumes that in-
vestors have an irrational belief in mean-reversion (Odean (1998), Weber and
Camerer (1998), Kaustia (2010)). If investors believe that stocks that have re-
cently done well will subsequently do poorly, and that stocks that have recently
done poorly will subsequently do well, their optimal trading strategy leads to
a disposition effect. We label such beliefs “irrational” because they are at odds
with Odean’s (1998) finding that the winner stocks investors sell subsequently
do well, not poorly. While the mean-reversion hypothesis is appealing for its
simplicity, and is consistent with some evidence from psychology on how peo-
ple form beliefs, some studies cast doubt on its validity. For example, Weber
and Camerer (1998) ask subjects to trade stocks in an experimental market,
and find that these subjects exhibit a disposition effect in their trading. To
test the mean-reversion hypothesis, they add a condition in which subjects’
holdings are exogenously liquidated at full value at random times, after which
subjects are asked to reinvest the proceeds across stocks in any way they like.
If subjects were holding on to stocks with paper losses because of a belief in
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mean-reversion, we would expect them to re-establish their positions in these
stocks. However, they do not do so.

Another popular behavioral economics model posits that the disposition ef-
fect results from prospect theory preferences (Kahneman and Tversky (1979)).
Prospect theory, a prominent theory of decision-making under risk, posits that
individuals make decisions by computing the utility of potential gains and
losses, where gains and losses are measured relative to a reference point that
is often taken to be the status quo, and where the utility function is assumed
to be concave over gains and convex over losses. At first sight, it appears that
prospect theory may be helpful for understanding the disposition effect. If an
investor is holding a stock that has risen in value, he may think of it as trading
at a gain. If, moreover, the concavity of the value function over gains induces
risk aversion, this may lead him to sell the stock. Conversely, if the convex-
ity of the value function over losses induces risk-seeking, the investor may be
inclined to hold on to a stock that has dropped in value. Barberis and Xiong
(2009) have recently shown, however, that it is surprisingly difficult to for-
malize this intuition: They find that an investor who derives prospect theory
utility from the annual trading profit on each stock that he owns often exhibits
the opposite of the disposition effect. Kaustia (2010) discusses other problems
with the prospect theory approach: For example, he shows that it predicts that
investors’ propensity to sell a stock depends on the magnitude of the embedded
paper gain in a way that is inconsistent with the empirical facts.

Another behavioral model of the disposition effect, and the one we focus
on in this paper, is based on the realization utility hypothesis (Shefrin and
Statman (1985), Barberis and Xiong (2012), Ingersoll and Jin (2013)). The
central assumption of this model is that investors derive utility directly from
realizing gains and losses on risky assets that they own: they experience a
positive burst of utility when they sell an asset at a gain relative to purchase
price, where the amount of utility depends on the size of the realized gain, and a
negative burst when they sell an asset at a loss relative to purchase price, where
the amount of disutility depends on the size of the realized loss.4 Barberis and
Xiong (2012) show that, when realization utility has a linear functional form,
and when the time discount rate is sufficiently positive, a trader who maximizes
the expected discounted sum of future realization utility bursts will exhibit a
disposition effect. The intuition is simple. If an investor derives pleasure from
realizing capital gains and, moreover, is impatient, he will be keen to sell stocks
at a gain. Conversely, if he finds it painful to sell stocks at a capital loss and

4 Barberis and Xiong (2012) speculate that realization utility arises because of the way people
think about their investing history. Under this view, some investors—in particular, less sophis-
ticated investors—do not think about their investing history in terms of overall portfolio return,
but rather as a series of investing “episodes,” each of which is characterized by three things: the
identity of the asset, the purchase price, and the sale price. “I bought GE at $40 and sold it at $70”
might be one such episode, for example. According to this view, an investor who sells a stock at a
gain feels a burst of positive utility right then because, through the act of selling, he is creating
what he views as a positive investing episode. Similarly, if he sells a stock at a loss, he experiences
a burst of disutility: by selling, he is creating a negative investing episode.
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also discounts future utility at a high rate, he will delay selling losing stocks
for as long as possible.5

While the realization utility hypothesis makes predictions about behavior
that are consistent with the disposition effect, as well as with other empirical
patterns, it is based on assumptions that depart significantly from those of
traditional models. In particular, its predictions rely on the assumption that
utility depends not only on consumption, but also on the act of realizing capital
gains and losses. Given the unusual nature of this assumption, it seems espe-
cially important to carry out direct tests of the extent to which the hypothesized
source of utility is actually computed by subjects and affects their decisions. In
the rest of the paper, we show how this can be done using fMRI measures of
neural activity.

II. Experimental Design and Predictions

In this section, we first describe the experimental stock market that we set
up to test the realization utility model, and then lay out the specific behavioral
and neural predictions of the model that we test.

A. Design

The design of our experimental market builds directly on that of an earlier
nonneural experiment conducted by Weber and Camerer (1998).

Subjects are given the opportunity to trade three stocks—stock A, stock
B, and stock C—in an experimental market. The experiment consists of two
identical sessions separated by a one-minute break. Each session lasts approxi-
mately 16 minutes and consists of 108 trials. We use t to index the trials within
a session.6

At the beginning of each session, each subject is given $350 in experimental
currency and is required to buy one share of each stock. The initial share price
for each stock is $100; after the initial purchase, each subject is therefore left
with $50. Every trial t > 9 consists of two parts, a price update and a trading
decision, each of which corresponds to a separate screen that the subject sees
(Figure 1). In the price update part, one of the three stocks is chosen at random
and the subject is shown a price change for this stock. Stock prices only evolve
during the price update screens; as a result, subjects see the entire price path
for each stock. In the trading part, one of the three stocks is again chosen at
random and the subject is asked whether he wants to trade the stock. No new
information is revealed during this part.

5 Time discounting is not a critical part of the realization utility hypothesis. The disposition
effect can also be generated by a model with no time discounting but where realization utility
has an S-shaped functional form, as in prospect theory (Barberis and Xiong (2009)). Adopting this
alternative version of the realization utility hypothesis would not significantly affect our analysis.

6 We split our experiment into two sessions in order to avoid running the fMRI machine for too
long without a break, as this could lead to potential medical risks for the subjects.
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Figure 1. Sample screens from a typical trial in the fMRI experiment. For trials 10 to 108,
subjects see a price update screen for two seconds, followed by a trading screen for which they
have up to three seconds to enter a decision (a blank screen is displayed in between to temporally
separate different types of neural activity associated with decision-making). Because the blank
screen is displayed for a random amount of time, uniformly distributed between one and three
seconds, the average length of a trial, consisting of all three screens, is seven seconds. The screens
shown above are for a trial in which the subject owns both stocks A and B. If the subject did not
own stock B at the price update screen, the purchase price would not be displayed. If the subject did
not own stock A at the trading screen, he would be given the opportunity to buy it. The screens are
displayed while subjects are inside an fMRI scanner, and decisions are entered using a handheld
device. For trials 1 to 9, subjects see only the price update screen and the blank screen; this allows
them to accumulate information about price changes before having to make any decisions.

We split each trial into two parts to temporally separate different types of
computations associated with decision-making. At the price update screen, sub-
jects are provided with information about a change in the price of one of the
three stocks, but do not have to compute the value of buying or selling the stock,
both because they are not allowed to make decisions at this stage and because
they do not know which of the three assets will be selected for trading in the next
screen. At the trading screen, the opposite situation holds: subjects need to com-
pute the value of buying or selling a stock, but do not need to update their beliefs
about the price process since no new information about prices is provided.

Trials 1 through 9 consist only of a price update screen; subjects are not
given the opportunity to buy or sell during these trials. This initial set of
trials enables subjects to accumulate information about the three stocks before
having to make any trading decisions.

Each subject is allowed to hold a maximum of one share and a minimum of
zero shares of each stock at any point in time. In particular, short-selling is not
allowed. The trading decision therefore reduces to deciding whether to sell a
stock (conditional on holding it) or buy it (conditional on not holding it). The
price at which a subject can buy or sell a stock is given by its current market
price.

The price path of each stock is governed by a two-state Markov chain with
a good state and a bad state. The Markov chain for each stock is independent
of the Markov chains for the other two stocks. Suppose that, in trial t, there is
a price update for stock i. If stock i is in the good state at that time, its price
increases with probability 0.55 and decreases with probability 0.45. Conversely,
if it is in the bad state at that time, its price increases with probability 0.45
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and decreases with probability 0.55. The magnitude of the price change is
drawn uniformly from {$5, $10, $15}, independently of the direction of the
price change.

The state of each stock evolves over time in the following way. Before trial
1, we randomly assign a state to each stock. If the price update in trial t > 1
is not about stock i, then the state of stock i in trial t remains the same as its
state in the previous trial, trial t − 1. If the price update in trial t > 1 is about
stock i, then the state of stock i in this trial remains the same as in trial t − 1
with probability 0.8, but switches with probability 0.2. In mathematical terms,
if si,t ∈ {good, bad} is the state of stock i in trial t, then si,t = si,t−1 if the time
t price update is not about stock i, whereas if the time t price update is about
stock i, the state switches as follows:

si,t = good si,t = bad

si,t-1 = good 0.8 0.2
si,t-1 = bad 0.2 0.8

The states of the stocks are never revealed to the subjects; rather, subjects
have to infer them from the observed price paths. To make it easier to compare
the trading performance of different subjects, we use the same set of realized
prices for all subjects.

A key aspect of our design is that, conditional on the information available
to subjects, each of the stocks exhibits positive autocorrelation in its price
changes. If a stock performed well at its last price update, it was probably in
the good state for that price update. Since it is highly likely (probability 0.8)
to remain in the same state for its next price update, its next price change is
likely to also be positive.

At the end of each session, we liquidate subjects’ holdings of the three stocks
and record the cash value of their position. We give subjects a financial incen-
tive to maximize the final value of their portfolio at the end of each session.
Specifically, if the total value of a subject’s cash and risky asset holdings at the
end of session 1 is $X in experimental currency, and the total value of his cash
and risky asset holdings at the end of session 2 is $Y in experimental currency,
then his take-home pay in actual dollars is 15 + (X + Y)/24.7 Subjects’ earnings
ranged from $43.05 to $57.33 with a mean of $52.57 and a standard deviation
of $3.35.

To avoid liquidity constraints, we allow subjects to carry a negative cash
balance in order to purchase a stock if they do not have sufficient cash to do so
at the time of a decision. If a subject ends the experiment with a negative cash
balance, this amount is subtracted when computing the terminal value of his
portfolio. The large initial cash endowment, together with the constraint that

7 In other words, we average X and Y to get (X+Y)/2, convert the experimental currency to actual
dollars using a 12:1 exchange rate, and add a $15 show-up fee.
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subjects can hold at most one unit of each stock at any moment, means that it
is extremely unlikely, ex-ante, that a subject would end the experiment with a
negative portfolio value; indeed, none of our subjects did.

A total of 28 Caltech subjects participated in the experiment (22 male, age
range 18 to 60, mean age 25.6, std. of age 7.6).8 All subjects were right-handed
and had no history of psychiatric illness, and none were taking medications that
interfere with fMRI. The exact instructions given to subjects at the beginning
of the experiment are included in the Internet Appendix.9 The instructions
carefully describe the stochastic structure of the price process, as well as all
other details of the experiment. Subjects were not explicitly told that stock
price changes are positively autocorrelated. However, they were told about
the Markov chain governing the stock price paths; they therefore had enough
information to infer the positive autocorrelation. Before entering the scanner,
the subjects underwent a practice session of 25 trials to ensure that they were
familiar with the market software.

There is a straightforward way to measure the extent to which a subject in
our experiment exhibits a disposition effect in his trading. We simply adapt
Odean’s (1998) methodology, described in Section I, as follows. Every time a
subject faces a decision about selling a stock, we classify his eventual action as
a paper gain (loss) if the stock’s current price is above (below) the purchase price
and he chooses not to sell, and as a realized gain (loss) if the stock’s current
price is above (below) the purchase price and he chooses to sell. We then count
up the number of paper gains, paper losses, realized gains, and realized losses
over all selling decisions faced by the subject and compute the PGR and PLR
measures described earlier. We assign the subject a disposition effect measure
of PGR-PLR. When this measure is positive (negative), the subject exhibits (the
opposite of) a disposition effect.

B. Optimal Trading Strategy

We now characterize the optimal trading strategy for a risk-neutral Bayesian
investor whose objective is to maximize the expected value of his take-home
earnings; from now on, we refer to this investor as an “expected value” investor.
The optimal strategy for this investor is to sell (or not buy) a stock when he
believes that it is more likely to be in the bad state than in the good state, and
to buy (or hold) the stock when he believes that it is more likely to be in the
good state.

Formally, let pi,t be the price of stock i in trial t after any price update about
the stock, and let qi,t = Pr(si,t = good|pi,t, pi,t−1, . . . , pi,1) be the probability
that a Bayesian investor, after seeing the price update in trial t, would as-
sign to stock i being in the good state in trial t. Also, let zt take the value one

8 One additional subject participated in the experiment but was excluded from further analyses
because his head motion during the scanning exceeded a prespecified threshold, thereby affecting
the reliability of the neural measurements.

9 The Internet Appendix is available in the online version of the article on The Journal of Finance
website.
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if the price update in trial t indicates a price increase for the stock in question,
and minus one if the price update indicates a price decrease. Then qi,t = qi,t−1
if the price update in trial t is not about stock i, whereas, if the price update in
trial t is about stock i, we have

qi,t(qi,t−1, zt)

= Pr(zt|si,t = good)Pr(si,t = good|qi,t−1)
Pr(zt|si,t = good)Pr(si,t = good|qi,t−1) + Pr(zt|si,t = bad)Pr(si,t = bad|qi,t−1)

= (0.5 + 0.05zt)(0.8qi,t−1 + 0.2(1 − qi,t−1))
(0.5 + 0.05zt)(0.8qi,t−1 + 0.2(1 − qi,t−1)) + (0.5 − 0.05zt)(0.2qi,t−1 + 0.8(1 − qi,t−1))

.

(3)

The optimal strategy for an expected value investor is to sell (if holding) or
not buy (if not holding) stock i in trial t when qi,t < 0.5 and to hold or buy it
otherwise.

Note that a trader who follows the optimal strategy described above will
exhibit the opposite of the disposition effect. If a stock performed well on the
last price update, it was probably in a good state for that price update. Since
it is very likely to remain in the same state for its next price update, its next
price change is likely to also be positive. The optimal strategy therefore involves
selling winner stocks relatively rarely, and losing stocks more often, thereby
generating the reverse of the disposition effect.

Of course, it is difficult for subjects to do the exact calculation in equation (3)
in real time during the experiment. However, it is relatively straightforward for
them to approximate the optimal strategy: they need simply keep track of each
stock’s most recent price changes, and then hold on to stocks that have recently
performed well while selling stocks that have recently performed poorly. The
fact that a stock’s purchase price is reported on the trading screen makes it
particularly easy to follow an approximate strategy of this kind as subjects can
use the difference between the current price and the purchase price as a proxy
for the stock’s recent performance.10

C. Behavioral and Neural Predictions of the Realization Utility Model

We now lay out the behavioral and neural predictions of the realization utility
model, and contrast them with the predictions of the expected value model—the
benchmark model that assumes a risk-neutral, Bayesian decision-maker. The
specific realization utility model we have in mind is one where, as in Barberis
and Xiong (2012), realization utility has a linear functional form, the time

10 Our rational benchmark assumes risk neutrality because the monetary risk in our experiment
is small. We also considered the case of risk aversion, however, and concluded that its predictions
do not differ significantly from those of risk neutrality. In some models, risk aversion can generate a
disposition effect through rebalancing motives. This is not the case in our experiment, however, be-
cause the volatility of stock price changes is independent of the level of the price. Furthermore, any
rebalancing motives would be of second-order importance relative to the impact of time variation
in the mean stock return.
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discount rate is strongly positive, and the agent maximizes the discounted sum
of current and expected future realization utility flows.

Consider the behavioral predictions first. During the instruction session,
subjects were told the structure of the data-generating process for stock prices.
From this, it is straightforward to infer that price changes are positively au-
tocorrelated. In such a market, an expected value investor will exhibit the
opposite of the disposition effect; indeed, for the actual sequence of prices that
our subjects see, the value of the PGR-PLR measure under the optimal trading
strategy for an expected value investor is –0.76. In other words, this investor
will have a much greater propensity to realize losses than gains. By contrast,
a trader who experiences bursts of realization utility and who discounts future
utility at a high rate will sell winner stocks more often than the expected value
trader, and loser stocks less often. After all, he is keen to realize capital gains as
soon as possible and to postpone realizing capital losses for as long as possible.
This leads to our first prediction.

PREDICTION 1 (Behavioral): For an expected value trader, the value of the PGR-
PLR measure is –0.76. By contrast, for a realization utility trader, the value of
PGR-PLR is greater than –0.76.

We now turn to the neural predictions of the expected value and realization
utility models. As noted earlier, a key goal of the paper is to test whether the
basic assumptions of these models are consistent with the computations that
subjects actually make during the choice process.

The neural predictions build on basic findings from the field of decision neu-
roscience. A sizable number of studies find evidence consistent with the idea
that, in simple choice situations, the brain makes decisions by assigning val-
ues, often called “decision values,” to the options under consideration and then
comparing them to make a choice. These value signals are thought to reflect the
relative value of getting the option under consideration versus staying with the
status quo. In the context of a selling decision in our experiment, the decision
value would reflect the value of selling a stock versus keeping it; in the context
of a buying decision, it would reflect the value of getting the stock versus not
buying it. A substantial body of work shows that, in particular, activity in an
area of the vmPFC reliably encodes decision value computations at the time of
choice.11

Since this finding is critical to our analysis, it is important to summarize the
key lines of evidence that support it. First, across a wide range of stimuli and
choice paradigms, activity in the vmPFC, a region located at the front of the
brain directly behind the bridge of the nose, correlates reliably with behavioral
measures of the value of the objects of choice, and does so regardless of whether

11 See, for example, Hsu et al. (2005), Padoa-Schioppa and Assad (2006), Kable and Glimcher
(2007), Knutson et al. (2007), Tom et al. (2007), Hare et al. (2008), Kennerley et al. (2008), Chib
et al. (2009), Hare, Camerer, and Rangel (2009), Hsu et al. (2009), Hare et al. (2010), Levy et al.
(2010), Rangel and Hare (2010), and Litt et al. (2011).
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the object is actually chosen or not.12 Second, additional studies have shown
that activity in the vmPFC is more likely to be associated with the computation
of value than with alternative signals that are often correlated with value, but
are distinct from it. For example, Plassmann, O’Doherty, and Rangel (2010) rule
out the possibility that the vmPFC responses can be attributed to confounding
anticipatory emotions or anticipatory emotion signals, and show further that
these responses cannot be attributed to attentional, motor, or saliency signals.
Litt et al. (2011) also rule out the interpretation of vmPFC activity as atten-
tional, motor, or saliency signals, and show that activity in many other areas
of the brain that has often been interpreted as a value signal (e.g., anterior in-
sula activity) actually fits these alternative descriptions better. Third, patients
with lesions in their vmPFC exhibit impairments in decision-making (e.g., an
increase in the inconsistency of their choices, as measured by generalized ax-
iom of revealed preference (GARP) violations), a result that has been widely
interpreted as causal evidence for the role of vmPFC decision value signals in
choice (Fellows and Farah (2007), Camille et al. (2011), Camille, Tsuchida, and
Fellows (2011)). Taken together, these findings provide strong support for the
view, now widely held in neuroscience,13 that vmPFC responses at the time of
choice encode valuation signals for different stimuli for the purpose of guiding
choice.14

Our first two neural predictions involve comparing the decision value signals
that we observe in the vmPFC to the decision value signals that would be
predicted by the realization utility model and the expected value model. To
see the restrictions implied by these theories, consider first the decision value
signal that would be computed at the time of making a sell decision by an
individual who makes choices according to the expected value model. As noted

12 The evidence on this point is extensive. See Kable and Glimcher (2007), Plassmann, O’Doherty,
and Rangel (2007), Tom et al. (2007), Hare et al. (2008), Boorman et al. (2009), Chib et al. (2009), De
Martino et al. (2009), FitzGerald, Seymour, and Dolan (2009), Hare, Camerer, and Rangel (2009),
Peters and Buchel (2009), Talmi et al. (2009), Basten et al. (2010), Hare et al. (2010), Plassmann,
O’Doherty, and Rangel (2010), Prevost et al. (2010), Smith et al. (2010), Tusche, Bode, and Haynes
(2010), Wunderlich, Rangel, and O’Doherty (2010), Hare, Malmaud, and Rangel (2011), Hare et al.
(2011), Levy and Glimcher (2011), Lim, O’Doherty, and Rangel (2011), Litt et al. (2011), Park et al.
(2011), Hutcherson et al. (2012), Janowski, Camerer, and Rangel (2013), Kahnt et al. (2012), Lin,
Adolphs, and Rangel (2012), and Sokol-Hessner et al. (2012).

13 See Rangel and Hare (2010), Grabenhorst and Rolls (2011), Wallis (2011), Levy and Glimcher
(2012), Rangel and Clithero (2013), and Rushworth et al. (2012).

14 Some fMRI studies that look for neural correlates of value at the time of choice have also found
such correlations in areas like the posterior cingulate cortex, the dorsolateral prefrontal cortex, the
insula, and the ventral striatrum. There are two important differences, however, between vmPFC
activity and activity in these other areas. First, activity in these other areas is correlated with
decision values in some studies but not in others, whereas the vmPFC value signals are always
present (the only exceptions are studies in which the scanning parameters are not optimized to
carry out measurements in the vmPFC, a region that is especially difficult to image well). Second,
the additional tests described above (which are needed to make sure that the signals are really
decision values, and not correlated but distinct variables) have not been carried out in these other
areas. As a result, the computational basis of these areas in the process of making a decision
remains an open question.
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earlier, in the context of our experiment, the decision value of selling a stock
is the value of selling the stock minus the value of holding it. For the expected
value investor, the value of selling the stock is zero: if he sells it, he will no
longer own any shares of it, and so it can no longer generate any value for him.
In contrast, the value of holding the stock can be approximated by the stock’s
expected price change on its next price update:

Et[�pi,t+1|qi,t,�pi,t+1 �= 0] = 0.6(2qi,t − 1). (4)

The decision value signal at the time of making a sell decision is therefore given
by 0 − 0.6(2qi,t − 1), or 0.6(1 − 2qi,t); we will refer to this quantity throughout
the paper as the net expected value of selling, or NEV. Note that this is only an
approximation of the actual decision value because the exact value of holding a
stock is the stock’s expected cumulative price change until the subject decides
to sell it. However, there is little cost to using the above approximation because
the value of holding a stock only for its next price change is highly correlated
with the value of holding the stock until it is actually optimal to sell it (the
latter quantity can be computed by simulation).

Now consider the decision value signal that would be computed at the time
of making a sell decision by an individual who makes choices according to the
realization utility model. As noted earlier, we have in mind a simple form of
the model in which the individual maximizes the discounted sum of expected
future realized capital gains and losses. For such a trader, the value of selling is
proportional to the capital gain or loss, given by pt − ct, where ct is the purchase
price, or cost basis. Meanwhile, so long as the discount rate is sufficiently high,
the value of holding the stock is approximately zero. Thus, for this trader, the
decision value of selling is linearly related to pt − ct.15 This, together with the
fact that decision value signals have been found to be encoded in the vmPFC,
leads to the next prediction.

PREDICTION 2 (Neural): For expected value traders, activity in the areas of the
vmPFC associated with the computation of decision value should be linearly

15 We say that the value of holding a stock is “approximately” zero for a realization utility
trader because, in principle, there is some value to holding, namely, an expected future realization
utility flow. However, under the realization utility hypothesis, the trader is essentially myopic—he
discounts future utility flows at a high rate. To a first approximation, then, the value of holding
is zero. It may seem surprising that a subject would discount future utility at a high rate in the
context of a 30-minute experiment. However, the literature on hyperbolic discounting suggests that
discounting can be steep even over short intervals, perhaps because people distinguish sharply
between rewards available right now and rewards available at all future times. Furthermore,
what may be important in our experiment is not so much calendar time, as transaction time. A
subject who can trade stock B now may view the opportunity to trade it in the future as a very
distant event—one that is potentially dozens of screens away—and hence one that he discounts
heavily. Finally, we note that discounting is not an essential part of our hypothesis. The disposition
effect also follows from a model with no time discounting but where realization utility has an
S-shaped functional form, as in prospect theory. To a first approximation, this model leads to the
same decision value as the discounting-based model. The reason is that, under an S-shaped utility
function, the utility of selling a stock at a gain (loss) immediately is significantly higher (lower)
than the expected utility of holding on to it.
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proportional to the NEV (given by 0.6(1 − 2qi,t)) at the time of making selling
decisions, and thus independent of the cost basis. In contrast, for realization
utility traders, activity in these areas of the vmPFC should be linearly related
to the realizable gain or loss, pi,t − c.

The previous arguments indicate that, when making a sell decision, subjects
who place larger weight on realization utility should exhibit neural activity in
the vmPFC that is more strongly correlated with the realizable capital gain or
loss. However, subjects who place a larger weight on realization utility should
also exhibit a stronger disposition effect. It follows that subjects whose vmPFC
activity is more correlated with the realizable capital gain should exhibit a
stronger disposition effect in their trading.

PREDICTION 3 (Neural): Under the realization utility model, the degree to which
vmPFC activity correlates with the realizable capital gain should be correlated,
across subjects, with the strength of the disposition effect in their trading.

The final neural prediction is qualitatively different from the previous ones
in that it seeks to test directly if subjects experience bursts of realization utility
that are proportional to the capital gains they realize. One difficulty in testing
this prediction is that, while the theory of realization utility says that the trader
receives a utility burst at the moment of trade, it is hard to know, in practice,
when exactly this burst occurs. For example, in our context, does it occur at the
moment the subject presses a button to indicate his decision, or does it occur
a little later when he reflects on the trade? Moreover, it is unclear what the
duration of the burst is, in practice. In short, it is difficult to test the model
by looking for neural markers of the hedonic response because we do not know
when, exactly, to look for them.

Fortunately, we can overcome this problem with the help of an idea from
computational neuroscience. A sizable body of work shows that an area located
near the center of the brain, the vSt, computes a quantity known as a pre-
diction error in response to new information.16 The prediction error measures
the change in the expected net present value of utility generated by the news,
taking into account all sources of utility. It is positive if the news indicates an
improvement in the expected net present value of utility, and negative other-
wise. Importantly, it reflects the change in discounted utility but is insensitive
to the precise timing of the hedonic impact of the news. This is useful because it
means that we can test for hedonic effects associated with realizing gains and
losses by looking for a burst of activity in the vSt consistent with the change in
discounted utility that these effects generate. In summary, under the realiza-
tion utility model, when a trader sells a stock, this is associated with a utility
burst; while we do not know the exact timing or duration of the burst, we do
know that it generates a change in the expected net present value of utility, one

16 See, for example, Schultz, Dayan, and Montague (1997), McClure, Berns, and Montague
(2003), O’Doherty et al. (2003), Bayer and Glimcher (2005), Pessiglione et al. (2006), Hare et al.
(2008), Caplin et al. (2010), Glascher et al. (2010), Daw et al. (2011), and Lin, Adolphs, and Rangel
(2012).
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that should be reflected at the moment of sale in the prediction error computed
by the vSt.

PREDICTION 4 (Neural): Under the realization utility hypothesis, neural re-
sponses in the area of the vSt known to encode prediction errors should increase
(decrease) at the precise moment when traders realize a capital gain (loss).

III. fMRI Data Collection and Analysis

In this section, we describe how we collect and analyze the fMRI measures
of neural activity. The section contains enough information to serve as a brief
primer on the subject for readers who are unfamiliar with fMRI. For a more
detailed discussion, see Huettel, Song, and McCarthy (2004), Ashby (2011),
and Poldrack, Mumford, and Nichols (2011).

A. fMRI Data Collection and Measurement

We collect measures of neural activity over the entire brain using BOLD-
fMRI, which stands for blood-oxygenated level dependent functional magnetic
resonance imaging. BOLD-fMRI measures changes in local magnetic fields
that result from the local inflows of oxygenated hemoglobin and outflows of
de-oxygenated hemoglobin that occur when neurons fire. In particular, fMRI
provides measures of the BOLD response in small “neighborhoods” of brain
tissue called voxels, and is thought to measure the sum of the total amount of
neuronal firing into that voxel and the total amount of neuronal firing within
the voxel.17

One important complication is that the hemoglobin responses measured by
BOLD-fMRI are slower than the associated neuronal responses. Specifically,
although the bulk of the neuronal response takes place quickly, BOLD mea-
surements are affected for up to 24 seconds thereafter. Panel A of Figure 2
provides a more detailed illustration of the nature of the BOLD response. It
depicts the path of the BOLD signal in response to one (arbitrary) unit of neu-
ral activity of infinitesimal duration at time 0. The function plotted here is
called the canonical hemodynamic response function (HRF). It is denoted by
h(τ ), where τ is the amount of time elapsed since the neural activity impulse,
and has been shown to approximate well the pattern of BOLD responses for
most subjects, brain areas, and tasks.

Fortunately, there is a standard way of dealing with this. In particular, the
BOLD response has been shown to combine linearly across multiple sources
of neural activity (Boynton et al. (1996)). This property, along with knowledge
of the specific functional form of the HRF, allows us to construct a mapping
from predicted neural activity to predicted BOLD responses. Specifically, if the

17 The neural activity measured by fMRI in a 1 mm3 cube (about the size of a grain of salt)
represents the joint activity of between 5,000 to 40,000 neurons, depending on the area of the
brain.



924 The Journal of Finance R©

Figure 2. BOLD measurements of neural activity. Panel A: Because fMRI measures the
blood-oxygenated level dependent (BOLD) response, and not neural activity itself, we need a
mapping from neural activity to the BOLD response to make inferences about changes in neural
activity. This mapping is known as the canonical hemodynamic response function, and is shown
here as a function of one arbitrary unit of instantaneous neural activity at time 0. Panel B: This
figure shows the BOLD response (the dashed line) that results from three sequential sources of
neural activity (the solid line). The BOLD response combines linearly across multiple sources of
neural activity.
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predicted level of neural activity at any particular time is given by a(t), then
the level of BOLD activity at any instant t is well approximated by

b(t) =
∫ ∞

0
h(u)a(t − u)du, (5)

which is the convolution between the HRF and the neural inputs. This inte-
gral has a straightforward interpretation: it is a lagged sum of all the BOLD
responses triggered by previous neural activity. Panel B of Figure 2 illustrates
the connection between neural activity and BOLD responses; it depicts a hy-
pothetical path of neural activity (the solid line), together with the associated
BOLD response (the dashed line).

During our experiment, we acquire two types of MRI data in a 3.0 Siemens
Tesla Trio MRI scanner with an eight-channel phased array coil. First, we
acquire BOLD-fMRI data while the subjects perform the experimental task. We
use a voxel size of 3 mm3, and collect these data for the entire brain (�100,000
voxels) every 2.75 seconds.18 We also acquire high-resolution anatomical scans
that we use mainly for realigning the brains across subjects and for localizing
the brain activity identified by our analyses.19

B. fMRI Data Preprocessing

Before the BOLD data can be analyzed to test our hypotheses, they have to
be converted into a usable format. This requires the following steps, which are
fairly standard (see Huettel, Song, and McCarthy (2004), Ashby (2011), and
Poldrack, Mumford, and Nichols (2011)) and which are implemented by way
of a specialized but commonly used software package called SPM5 (Wellcome
Department of Imaging Neuroscience, Institute of Neurology, London, UK).

First, we correct for slice acquisition time within each voxel. This is necessary
because the scanner does not collect data on all brain voxels simultaneously.
This simple step, which involves a nonlinear interpolation, temporally realigns
the data across all voxels.

Second, we correct for head motion to ensure that the time series of BOLD
measurements recorded at a specific spatial location within the scanner is
always associated with the same brain location throughout the experiment.20

18 More precisely, we acquire gradient echo T2*-weighted echoplanar (EPI) images with BOLD
contrast. To optimize functional sensitivity in the orbitofrontal cortex (OFC), a key region of inter-
est, we acquire the images in an oblique orientation of 30° to the anterior commissure–posterior
commissure line (Deichmann et al. (2003)). Each volume of images has 45 axial slices. A total of
692 volumes were collected over two sessions. The imaging parameters are as follows: echo time,
30 ms; field of view, 192 mm; in-plane resolution and slice thickness, 3 mm; repetition time, 2.75 s.

19 More precisely, we acquire high-resolution T1-weighted structural scans (1 × 1 × 1 mm) for
each subject. These are coregistered with their mean EPI images and averaged across subjects to
permit anatomical localization of the functional activations at the group level.

20 BOLD measurements were corrected for head motion by aligning them to the first full brain
scan and normalizing to the Montreal Neurological Institute’s EPI template. This entails estimat-
ing a six-parameter model of head motion for each volume (three parameters for center movement,
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Third, we realign the BOLD responses for each individual into a common
neuroanatomical frame (the standard Montreal Neurological Institute EPI
template). This step, called spatial normalization, is necessary because brains
come in different shapes and sizes; as a result, a given spatial location maps to
different brain regions in different subjects. Spatial normalization involves a
nonlinear reshaping of the brain to maximize the match with a target template.
Although the transformed data are not perfectly aligned across subjects due
to remaining neuroanatomical heterogeneity, the process is sufficiently accu-
rate for the purposes of most studies. Furthermore, any imperfections in the
realignment process introduce noise that reduces our ability to detect neural
activity of interest.

Fourth, we also spatially smooth the BOLD data for each subject by making
BOLD responses for each voxel a weighted sum of the responses in neighboring
voxels, where the weights decrease with distance.21 This step ensures that the
error structure of the data conforms to the normality assumptions on the error
structure of the regression models that we use to test our hypotheses (Huettel,
Song, and McCarthy (2004), Poldrack, Mumford, and Nichols (2011)).

Finally, we remove low-frequency signals that are unlikely to be associated
with neuronal responses to individual trials.22 An example of such a signal is
the effect of a continuous head movement over the course of the experiment
that is not fully removed by the second correction step described above.

C. fMRI Main Data Analyses

The key goals of our analysis are to test if the region of the vmPFC that
has been repeatedly shown to encode decision values at the time of choice
exhibits activity consistent with Predictions 2 and 3, and if the area of the vSt
known to encode prediction errors at the time of utility-relevant news exhibits
activity consistent with Prediction 4. To do so, we run statistical tests to see
whether there are areas within these regions of the brain, given by collections
of spatially contiguous voxels called clusters, where the BOLD response reflects
neural activity that implements the computations of interest (e.g., realization
utility computations). This is complicated by the fact that, since every voxel
contains thousands of neurons, the BOLD responses in a voxel can be driven
by multiple signals. Fortunately, the linear properties of the BOLD signal allow
the neural signals of interest to be identified using standard linear regression
methods.

and three parameters for rotation), and then removing the effect of the motion using these param-
eters. For details, see Friston et al. (1996).

21 Spatial smoothing was performed using an 8 mm full-width half-maximum Gaussian kernel.
Essentially, this step entails replacing every measurement at every voxel with a weighted sum of
the measurements in a neighborhood centered on the voxel, using weights that are given by the
Gaussian kernel.

22 Specifically, we applied a high-pass temporal filter to the BOLD data with a cut-off of 128
seconds.
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Figure 3. Constructing a general linear model (GLM). There are two sets of regressors:
target computations and additional controls. Target computations reflect the signals of interest
whereas additional controls are used to clean up noise that is inherent in the BOLD signal.
Because the target computations are induced by neural activity, we convolve them; we do not
convolve additional controls because they do not trigger a hemodynamic response. Finally, we
enter the two sets of variables, one of which is convolved, into a GLM with AR(1) noise.

The general statistical procedure is straightforward, and will be familiar to
most economists (see Figure 3 for a summary). The analysis begins by specify-
ing two types of variables that might affect the BOLD response, namely, target
computations and additional controls. The target computations reflect the sig-
nals we are looking for (e.g., a realization utility signal at the time of selling a
stock). They are specified by a time series si(t) describing each signal of inter-
est. For each of these signals, let Si(t) denote the time series that results from
convolving the signal si(t) with the HRF, as described above. The additional
controls, denoted by c j(t), are other variables that might affect the BOLD time
series (e.g., residual head movement or time trends). These are introduced to
further clean up the noise in the BOLD signal, but are not explicitly used in
any of our tests. The control variables are not convolved with the HRF because,
while they affect the measured BOLD responses, they do not reflect neural
activity that triggers a hemodynamic response.23

The linearity of the BOLD signal implies that the level of BOLD activity bv(t)
in any voxel v at time t should be given by

bv(t) = constant +
∑

i

βv
i Si(t) +

∑
j

αv
j c j(t) + ε(t), (6)

23 For example, linear trends are often included as controls because the scanner heats up with
continuous operation, inducing a linear change in the measured BOLD responses.
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where ε(t) denotes AR(1) noise. This model is estimated independently in each
of the voxels that fall within the relevant region of interest (the vmPFC for
Predictions 2 and 3, and the vSt for Prediction 4). Our hypotheses can then be
restated as tests about the coefficients of this regression model: signal i is said
to be associated with activity in voxel v only if βv

i is significantly different from
zero.

Two additional considerations apply to most fMRI studies, including this one.
First, we are interested in testing hypotheses about the distribution of the sig-
nal coefficients in the population of subjects, not hypotheses about individual
subject coefficients. This would normally require estimating a mixed effects ver-
sion of the linear model specified above, which, given the size of a typical fMRI
data set, would be computationally intensive. Fortunately, there is a shortcut
that provides a good approximation to the full mixed effects analysis (Penny
et al. (2006)). This shortcut involves estimating the parameters separately for
each individual subject, averaging them across subjects, and then performing
t-tests. This is the approach we follow here.

Second, since our tests are carried out in each of the voxels in the relevant
regions of interest (429 voxels for the vmPFC, and 68 for the vSt), there is a
concern about false-positives. To address this problem, we correct for multi-
ple comparisons within the relevant region of interest, a procedure known in
the fMRI literature as a small volume correction (SVC). We report results as
significant if they pass SVC correction at a level of p < 0.05.24

As noted earlier, we conduct our tests in an area of the vmPFC that has been
linked to the computation of decision values and in an area of the vSt that
has been linked to the computation of prediction errors. Specifically, for the
vmPFC region of interest, we construct a sphere with a 15 mm radius around
the coordinates (MNI-space, x = 3, y = 36, z = −18) found to exhibit peak cor-
relation with decision values at the time of choice in Plassmann, O’Doherty,
and Rangel (2010), and then intersect this sphere with an anatomical mask of
the vmPFC.25 For the vSt region of interest, we construct a sphere with a 15
mm radius around the coordinates (MNI-space, x = −15, y = 6, z = −12) found
to exhibit peak correlation with prediction errors in Lin, Adolphs, and Rangel
(2012), and then intersect this sphere with an anatomical mask of the vSt.26 As
discussed in Section II, many studies find results that are very similar to those
of the two studies listed above; it is therefore not crucial which exact papers
we use to define the regions of interest (so long as the radii of the spheres are
sizable, as they are here).

24 Specifically, we report results as significant if voxels within the prespecified region of interest
pass p < 0.001 uncorrected with a 15-voxel extent threshold and if they pass SVC with a family-wise
error rate of less than 0.05.

25 The vmPFC anatomical mask was identified using the AAL digital atlas of the human brain
(Tzourio-Mazoyer et al. (2002)), and includes the rectus, the orbital part of the superior frontal
gyrus, and the orbital part of the middle frontal gyrus.

26 The vSt anatomical mask is taken from Chib et al. (2012) and consists of the nucleus accum-
bens and the ventral putamen.
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Figure 4. Measures of the disposition effect (PGR-PLR) for each subject. Each vertical
column corresponds to a specific subject in our experiment. We compute standard error bars as
in Odean (1998). The dashed line indicates the level of the disposition effect that an expected
value trader would exhibit, namely, –0.76. All subjects exhibit a disposition effect greater than this
benchmark level, and a majority have a disposition effect that is significantly positive. The figure
also shows that there is significant heterogeneity in the size of the disposition effect across subjects
(std: 0.32).

IV. Results

A. Test of Behavioral Prediction 1

We begin our test of Prediction 1 by computing the strength of the dispo-
sition effect for each subject using the PGR-PLR measure described at the
end of Section II.A. We find that the average PGR and PLR across subjects
are 0.412 and 0.187, respectively. This implies an average PGR-PLR value of
0.225, which is significantly greater than zero (p < 0.001, in a two-tailed t-test
against zero). In other words, not only is the average value of PGR-PLR sig-
nificantly greater than the expected value model benchmark of –0.76, but it is
actually significantly positive. These results are inconsistent with the hypoth-
esis that our subjects are all expected value investors, but are consistent with
the hypothesis that some of them are influenced by realization utility.

Figure 4 depicts tests of Prediction 1 at the individual level. Each vertical bar
shows the value of PGR-PLR for a particular subject. The horizontal dashed
line near the bottom of the figure marks the –0.76 value of PGR-PLR that
corresponds to an expected value investor. The figure shows that every subject
exhibits a disposition effect greater than –0.76. The hypothesis that the average
disposition effect is not different from –0.76 is rejected with a t-statistic of
16.52.27

27 We also test for the possibility that, due to learning, the disposition effect decreases in size
over time. We find that the mean disposition effect is smaller in the second half of the experiment
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Figure 5. Total number of sell decisions by decision type and optimality. A realized gain
(loss) refers to a decision where a subject sells a stock trading at a gain (loss) relative to purchase
price. A paper gain (loss) refers to a decision where a subject decides to hold a stock trading at a
gain (loss). The optimality measures show an important aspect of our design: selling winners and
holding losers, which leads to a disposition effect, are typically suboptimal decisions. Decisions are
pooled across all subjects.

The figure also shows that there is significant heterogeneity in the strength of
the disposition effect across subjects: the value of PGR-PLR ranges from –0.41
to 0.83 and has a standard deviation of 0.32. This cross-individual variation
is consistent with Dhar and Zhu (2006), who, using data on actual trading
decisions, also find significant variation in the strength of the disposition effect
across investors. Interestingly, while both PGR and PLR vary a good deal across
subjects, the two variables have a correlation of only 0.03: subjects who are slow
to sell losing stocks are not necessarily also quick to sell winning stocks. This
independence between selling behavior in the gain and loss domains is also
consistent with the empirical findings of Dhar and Zhu (2006).28

Figure 5 provides additional insight into our subjects’ selling behavior by
showing, for each of the four types of decisions that a subject could make
(decisions to realize a gain, decisions to realize a loss, decisions not to realize
a gain, and decisions not to realize a loss), the fraction of decisions that are
optimal, where “optimal” is defined by the expected value benchmark. For
example, the figure shows that our subjects realized gains on 495 occasions

compared to the first half (0.145 versus 0.259, p = 0.087, a reduction of 11.2% relative to the
optimal level of –0.76), but that it is still positive and sizable in the second half (0.145 versus the
optimal level of –0.76, p < 0.001).

28 The low correlation between PGR and PLR is not inconsistent with realization utility; it simply
suggests that realization utility is not the only factor driving subjects’ trading. For example, if our
subjects are influenced to varying extents by realization utility but also differ in how much they
enjoy trading in general, they may exhibit a near-zero correlation between PGR and PLR—the
negative correlation between the two variables induced by realization utility may be offset by the
positive correlation induced by the taste for trading.
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and that most of these decisions were suboptimal. Given that stocks exhibit
short-term price momentum in the experiment, it is generally better to hold
on to a stock that has been performing well. This explains why most (77.9%) of
subjects’ decisions to hold winning stocks were optimal, and why most (67.5%)
of subjects’ decisions to sell winning stocks were suboptimal. Similarly, in the
experiment, it is generally better to sell a stock that has been performing
poorly. This explains why most (79.2%) of subjects’ decisions to sell losing
stocks were optimal, while most (80.3%) of their decisions to hold these stocks
were suboptimal.

The disposition effect exhibited by our subjects is stronger than that found
in empirical studies (Odean (1998), Frazzini (2006)). One possible reason for
this is that the current price and the cost basis of a stock are both prominently
displayed on the trading screen.29 If, because of realization utility, a subject
has a preference for realizing gains and not realizing losses, the fact that we
report the purchase price may make it easier for him to cater to this preference
and hence to exhibit a disposition effect.30

In summary, the behavioral results indicate that our average subject exhibits
a strong disposition effect. This is inconsistent with the expected value model,
but is consistent with the realization utility model.

B. Test of Neural Prediction 2

We now turn to Prediction 2. This prediction states that, for subjects who
experience realization utility, activity in an area of the vmPFC known to encode
decision values at the time of making a decision should be correlated with the
capital gain variable pt − ct. By contrast, it states that, for expected value
subjects, activity in this area should correlate with the NEV variable, but not
with the capital gain.

The prespecified region of the vmPFC in which we test for the decision value
signals (see the end of Section III) is the area colored yellow and orange in
Figure 6; as noted in Section III, it contains 429 voxels. To carry out the main

29 One natural question about our experiment is: How much of the realization utility effect that
we have found depends on the fact that we display the original purchase price on the trading
screen in a salient way? We emphasize that it is unlikely that the presence of a realization utility
effect depends critically on this aspect of the design. In follow-up work, we carry out behavioral
experiments to study the impact of the saliency with which the purchase price information is
displayed (Frydman and Rangel (2013)). We find that eliminating the purchase price from the
trading screen diminishes the size of the disposition effect, but that the effect is still well above
the optimal level that an expected value investor would exhibit. This suggests that reporting the
purchase price on the trading screen is not a critical aspect of our current design. Moreover, given
that most investors in real-world financial markets have at least a rough sense of the price at
which they purchased a stock, displaying the cost basis on the trading screen is likely a better
approximation of reality.

30 At the same time, because our experimental design induces a negative correlation (equal to
–0.55) between the capital gain and the NEV of selling, the fact that we report the purchase price
also makes it easy for an expected value subject to trade in a way that is close to his optimal
strategy, namely, to hold a stock when it has a capital gain and to sell it when it has a capital loss.
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Figure 6. vmPFC activity reflects realization utility. The figure presents estimation results
from equation (7),

bv(t) = constant + βv
1 Idec(t)(pt − ct) + βv

2 Idec(t)NEVt + βv
3controls + ε(t).

Yellow voxels are those in our prespecified region of interest in the vmPFC. Red voxels are those that
exhibit activity at the time of trading screen onset that significantly correlate with the realizable
capital gain. Orange voxels are in the intersection of the two groups. For illustration purposes, the
significance threshold for the image is p < 0.001 with a 15-voxel extent threshold, but all statistics
reported in the paper are also small volume corrected at p < 0.05 using familywise error (FWE).
The z = −21 coordinate and the y = 39 coordinate indicate which two-dimensional plane is shown
in each of the two brain maps.

test of Prediction 2, we estimate the following general linear model (GLM) of
BOLD activity in every subject and voxel:

bv(t) = constant + βv
1 Idec(t)(pt − ct) + βv

2 Idec(t)NEVt + βv
3controls + ε(t), (7)

where bv(t) denotes the BOLD signal at time t in voxel v, Idec is an indicator
function that equals one if, at time t, the subject is presented with an oppor-
tunity to sell a stock, pt − ct is the realizable capital gain, and NEVt is the net
expected value from selling the stock under consideration at time t, namely
0.6(1 − 2qi,t). Finally, the “controls” vector includes the following variables: (1)
an indicator function denoting the onset of a selling opportunity, (2) an in-
dicator function denoting the onset of a buying opportunity, (3) an indicator
function denoting the onset of a buying opportunity interacted with the NEV of
buying the asset, (4) an indicator function denoting the onset of a price update
screen when the subject owns the asset, (5) an indicator function denoting the
onset of a price update screen when the subject owns the asset interacted with
the price change, (6) an indicator function denoting the onset of a price update
screen when the subject does not own the asset, (7) an indicator function de-
noting the onset of a price update screen when the subject does not own the
asset interacted with the price change, (8) regressors controlling for physical
movement inside the scanner, and (9) session indicator variables. Controls 1 to
7 are convolved with the HRF, whereas controls 8 and 9 are not. As described in
Section III.A, these controls are necessary because the BOLD signal is affected

As a result, we do not think that presenting the purchase price on the trading screen should bias
an expected value trader toward exhibiting a disposition effect.
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up to 24 seconds after the initial neural impulse generated by the onset of a
decision screen or price update screen (Figure 2).31 Therefore, some portion
of the variance in the BOLD signal we observe at the time subjects are com-
puting their sell/hold decision can be attributed to the specific events we are
controlling for. We use this same vector of control variables in each GLM we
estimate in this paper. Finally, inferences about the extent to which the signals
of interest are encoded in a given voxel are made by carrying out a one-sided
t-test against zero of the average of the individually estimated coefficients (i.e.,
of the average βv

1across subjects, and of the average βv
2 across subjects), and by

correcting for multiple comparisons within the prespecified vmPFC region of
interest.

As shown in Figure 6, the results from these tests are consistent with the
predictions of the realization utility model, but not with those of the expected
value model. Within the prespecified 429-voxel vmPFC target region associated
with the computation of decision values in previous studies, we find a cluster
of 27 voxels in which βv

1, averaged across subjects, is significantly positive.
Below, we refer to these 27 voxels as the vmPFCROI. In contrast to the signif-
icant results we find for the capital gain regressor, there are no clusters that
significantly relate to the NEV variable at our statistical threshold.

The previous analysis identifies a region of the vmPFC, the vmPFCROI, in
which responses at the time of choice are consistent with the computation of the
decision value predicted by the realization utility model. We now carry out two
additional tests of the properties of the signals in this area. The first test inves-
tigates whether the capital gain variable pt − ct is reflected in the vmPFCROI
to differing extents in trials involving capital gains and trials involving capital
losses. To do this, we estimate the following subject- and voxel-level GLM:

bv(t) = constant + βv
1 Idec(t)Icap.gain(t)(pt − ct) + βv

2 Idec(t)Icap.loss(t)(pt − ct)

+ βv
3controls + ε(t), (8)

where Icap.gain and Icap.loss are indicator functions for trials involving capital
gains and capital losses, respectively. For each individual, we compute the
mean βv

1 and the mean βv
2 across the voxels in the vmPFCROI; we then average

these means across subjects. The resulting values of β1 = 0.028 and β2 = 0.029
are not significantly different from each other (p = 0.94). Thus, we cannot reject
the hypothesis that the net capital gain signal has a linear functional form.

The second test checks whether, as predicted by the realization utility model,
the signal in the vmPFC related to decision values is both positively correlated
with pt and negatively correlated with ct. This test is important because it
goes to the core of the “irrationality” implicit in the realization utility model,

31 Since the computations that take place during the price update screens do not play a role
in testing the realization utility model, we do not focus on them in the current study. However,
in a companion paper we analyze the neural activity during the price update screens (Frydman,
Camerer, and Rangel (2012)); in particular, we use these data to test regret-based models of
investing. We find that activity in the ventral striatum correlates positively with price changes at
the time of a price update for assets that are owned by the subject. Interestingly, the sign of this
correlation reverses for assets that are not owned by the subject.
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namely, that people are influenced by the cost basis when deciding whether to
sell an asset. The test is based on the following GLM:

bv(t) = constant + βv
1 Idec(t)pt + βv

2 Idec(t) ct + βv
3controls + ε(t). (9)

The key hypothesis of interest is that β2 < 0. We cannot conduct this test in
the vmPFCROI—since this region consists of voxels that correlate with pt −
ct, the test would be biased in favor of the hypothesis. To avoid this bias,
we first estimate equation (9) for each of the 429 voxels in the independent
vmPFC target region (taken, as described in Section III.C, from Plassmann,
O’Doherty, and Rangel (2010) and an anatomical mask of the vmPFC) and
then identify voxels that exhibit significant correlation with pt (p < 0.05, SVC);
we give this set of voxels the label vmPFCp. We then test whether voxels in
this region correlate significantly with the cost basis. The effect size, averaged
across voxels in vmPFCp for each subject, and then across subjects, is given by
β2 = −0.019, (p = 0.03). This result provides further evidence in support of the
realization utility hypothesis.

C. Test of Neural Prediction 3

We now test Prediction 3. Specifically, we check whether, as predicted by the
realization utility model, subjects whose neural activity in the vmPFC at the
time of a sell decision is particularly sensitive to the realizable capital gain also
exhibit a stronger disposition effect.

To make the logic of the test clearer, we conduct it separately for decisions
involving capital gains and decisions involving capital losses. In particular, for
each subject, we compute a neural measure of the degree to which a positive
capital gain is represented in the vmPFC at the time of choice, and also a
neural measure of the degree to which a negative capital gain—in other words,
a capital loss—is represented in the vmPFC at the time of choice. These subject-
level statistics are given by the maximum value, across voxels in the vmPFCROI,
of βv

1 and βv
2 from equation (8).32

According to Prediction 3, subjects with a high maximum value of βv
1—in

other words, subjects whose computations, at the time of a sell decision about
a stock with a capital gain, are particularly consistent with the realization
utility model—should exhibit a higher value of PGR (i.e., a higher propensity
to realize gains). Consistent with this prediction, we find that the correlation,
across subjects, between the maximum βv

1 and PGR is 0.58 (p = 0.001). The top
panel in Figure 7 illustrates this graphically.

Prediction 3 also implies that there should be a negative correlation, across
subjects, between the maximum βv

2 and PLR: subjects with a high maximum
value of βv

2—again, subjects whose computations at the time of making a sell

32 We use the maximum statistic instead of the average statistic because of the heterogeneity
in anatomical and functional structure of the vmPFC across subjects. Since we are testing for a
correlation, rather than for a particular mean value, using the maximum statistic will not bias our
results.
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Figure 7. Correlation between brain activity and measures of the disposition effect.
Each data point in the figure represents a single subject. Panel A: We find that, across subjects,
the degree to which vmPFC activity during a sell decision for a stock with a gain is correlated
with the gain is itself correlated with the proportion of gains realized. Panel B: We do not find
a similar correlation between the proportion of losses realized and the degree to which vmPFC
activity during a sell decision for a stock with a loss is correlated with the loss.
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decision about a stock with a capital loss are particularly consistent with the
realization utility model—should exhibit a lower propensity to realize losses.
However, we do not find a significant correlation between the maximum βv

2 and
PLR (p = 0.475). This can be seen in the lower panel of Figure 7.

In summary, then, the results in this section are consistent with Prediction
3 for sell decisions involving capital gains, but not for sell decisions involving
capital losses. In Section V, we discuss why this might be the case.

D. Test of Neural Prediction 4

Prediction 4 tests a basic assumption of the realization utility model. The
model posits that selling a stock at a gain generates a positive hedonic effect,
and that selling a stock at a loss generates a negative hedonic effect, inde-
pendent of the impact of the trade on lifetime consumption. As discussed in
Section II, while in theory this hedonic impact occurs at the moment of sale,
in practice it is hard to know what its precise timing and duration are. How-
ever, we do know that the utility burst corresponds to a change in discounted
lifetime utility; as such, it should generate a prediction error at the moment of
sale. This leads to the following form of Prediction 4: controlling for the size of
a capital gain, a decision to realize the gain should lead to a positive response
in the areas of the vSt known to correlate positively with prediction errors.

The region colored yellow and orange in Figure 8 shows the prespecified
region of the vSt identified in previous studies as being involved in the com-
putation of prediction errors. It is in this region—one that, as noted in Section
III.C, contains 68 voxels—that we look for a positive effect of realizing capital
gains.33 Specifically, our test of Prediction 4 is based on the following GLM:

bv(t) = constant + βv
1 Idec(t)Icap.gain(t)(pt − ct)

+ βv
2 Idec(t)Icap.gain(t)Isell(t)

+ βv
3 Idec(t)Icap.loss(t) + βv

4controls + ε(t). (10)

As before, Idec is an indicator function denoting an opportunity to sell a stock,
Icap.gain is an indicator function denoting an opportunity to sell a capital gain,
and Icap.loss is an indicator function denoting an opportunity to sell a capital
loss. Finally, Isell is an indicator function denoting that the subject actually
sold the stock. Note that this model allows us to estimate the marginal effect

33 Before continuing with our test of Prediction 4, we further validate, using data from our own
28 subjects, that our a priori target region of the vSt is responsible for computing a prediction error
signal. Specifically, we test whether news about a positive price change for an owned stock—an
event that should induce a positive prediction error—is positively correlated with activity in our
vSt target region. We can use the estimation results from equation (7) to test this hypothesis
because the price change during the price update screen is included as a control in that model. The
results indicate that voxels within the vSt target region do indeed exhibit positive correlation with
the price change (p < 0.05, whole-brain corrected FWE). This provides independent validation that
our vSt target region computes a prediction error.
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Figure 8. Direct tests of the realization utility hypothesis. Panel A: Yellow voxels are those
in our a priori region of interest in the vSt. Red voxels are those that exhibit greater activity
when subjects realize capital gains compared to when they hold capital gains (shown at p < 0.001
uncorrected with a 15-voxel extent threshold, for illustrative purposes only). Orange voxels are
those that are in the intersection of the two groups. The y = 6 coordinate indicates which two-
dimensional plane is shown in the brain map. Panel B: The figure shows the time-course of activity
in the vSt, averaged over the a priori region of interest, during trials when subjects are offered
the opportunity to sell a stock trading at a gain. The blue line plots the average activity in trials
where subjects decide to realize the gain, while the red line plots the average activity in trials
where subjects instead decide not to realize the gain. ** denotes p < 0.01, * denotes p < 0.05
(paired t-test). t = 0 corresponds to the instant at which the subject enters his trading decision on
a hand-held device.
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that realizing a capital gain (the second nonconstant regressor) has on neu-
ral activity in the vSt, after controlling for the size of the capital gain (the
first nonconstant regressor).34 The key test of interest is whether there are
voxels within the target vSt region for which βv

2, averaged across subjects, is
significantly positive.

Consistent with Prediction 4, we find a region of the vSt in which activity
correlates positively with the realization of capital gains (see Panel A of Fig-
ure 8, p < 0.05, SVC), while controlling for the magnitude of the capital gain.
Panel B of Figure 8 shows the time-course of the average BOLD response in
the original 68-voxel target vSt region when subjects issue a command to sell
a capital gain (the blue line) compared to when they issue a command to hold
a capital gain (the red line).35

Ideally, we would also carry out a test for the case of capital losses; specifically,
we would test for a negative impact in the same area of the vSt when a capital
loss is realized. Unfortunately, the data do not allow us to do this. As predicted
by the realization utility hypothesis, subjects realized very few losses over
the course of the two fMRI sessions they went through (the mean number of
realized losses per subject session is three). As a result, we do not have the
statistical power we need to look at the difference in neural responses when a
loss is realized versus not realized.

E. Tests of the Mean-Reversion Theory of the Disposition Effect

As discussed in Section I, one prominent alternative theory of the disposition
effect is that investors believe that stock prices mean-revert (Odean (1998),
Weber and Camerer (1998), Kaustia (2010)). In our setting, such a belief would
be irrational, as stock prices in our experiment exhibit positive autocorrelation.
Nonetheless, if, for some reason, our subjects think that stock prices in our
experiment are mean-reverting, this could potentially explain why they tend
to sell stocks that have recently gone up and hold on to stocks that have recently
gone down. In this section, we test this alternative theory using both behavioral
and neural data.

To investigate whether a belief in mean-reversion is driving our subjects’
behavior, we estimate the following mixed effects logistic model, which tests

34 We include the onset of the decision screen for capital loss trials only as a control variable in
this model.

35 The time-course of BOLD responses is based on a GLM specification that uses a series of
dummy variables that correspond to our events of interest: holding a capital gain and selling a
capital gain. For each of these two events, x = hold and x = sell, with additional controls for the onset
of price update screens, buying opportunities, and capital loss trials, and for n = 1, . . . .,T, we define

a series of dummy variables, d(t|x, n) =
{

1 if x occurred at t − n
0 otherwise

. The GLM is then specified as

bv(t) = constant + ∑
x,n γ v

x,nd(t|x, n) + βv
1session + βv

2movement + ε(t). The estimate of the change
in the BOLD response n seconds after the presentation of stimulus x is then given by γx,n. “Session”
and “movement” are control vectors for session-specific effects and physical movement inside the
scanner, respectively.
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whether, as predicted by the mean-reversion hypothesis, recent price changes
can significantly predict subjects’ decisions to sell or hold a stock:

sellt = constant + β1NEVt + β2(pt − ct) + β3�
1 pt + β4�

2 pt + εt. (11)

Here, sellt equals one if the subject sells the stock under consideration at time
t and zero if he holds it, and �mpt denotes the mth most recent price change
for this stock (these price changes may not have occurred in consecutive trials
because price updates in the experiment take place at random times). We find
that the capital gain has a coefficient of 0.017 and is a significant predictor of
the propensity to sell (t-stat = 2.93), but that none of the other variables are.
In particular, neither β3 nor β4 is significantly different from zero (p = 0.569
and p = 0.197, respectively). In other words, contrary to the mean-reversion
hypothesis, recent price changes do not significantly predict the decision to
sell.36

We can also use the neural data to test the mean-reversion hypothesis. In
particular, we test if neural activity in the target region of the vmPFC, defined
at the end of Section III.C, is correlated with recent price changes. We do this
by estimating the following GLM:

bv(t) = constant + Idec(t)[βv
1(pt − ct) + βv

2�1 pt + βv
3�2 pt] + βv

4controls + ε(t).

(12)

Under the mean-reversion hypothesis, the decision value of selling should be
positively correlated with recent price changes: a recent price increase indicates
a lower expected future return and hence a higher decision value of selling. This
hypothesis thus posits that responses in the vmPFC (i.e., the area involved in
the computation of decision values) should correlate positively with past price
changes. Contrary to this hypothesis, however, we do not find any activity in the
vmPFC that is significantly associated with the past price-change regressors
at our omnibus threshold of p < 0.05 SVC. In summary, both the behavioral
and neural analyses cast doubt on the mean-reversion hypothesis.37

36 Our experimental design implies a high correlation between NEV and recent price changes.
To check the robustness of our result to any collinearity issues, we also estimate the logistic
regression without the NEV variable. We again find that the capital gain significantly predicts the
sell decision, but that neither of the two most recent price changes does.

37 While our results cast doubt on the hypothesis that mean-reverting beliefs are driving our
subjects’ decisions, one can ask whether there are other non-Bayesian belief specifications that
could explain the observed trading patterns (see, for example, Kuhnen and Knutson (2011)). In
Frydman and Rangel (2013), a companion behavioral paper, we shed some light on this issue. In
that paper, we compare subjects’ trading behavior across a variety of treatments that differ only
in the information shown on the trading screen. One of the treatments is the one used here. In
another treatment, however, we also give subjects the NEV statistic on each trading screen; in
other words, we effectively give them the correct Bayesian beliefs. As a result, if subjects persist
in exhibiting a disposition effect, it is very difficult to attribute this to non-Bayesian beliefs. We
find that the addition of the NEV statistic decreases the size of the disposition effect that subjects
exhibit, but that it nonetheless remains substantial. This suggests that at least some portion of
the disposition effect that we find in the current study is not due to non-Bayesian beliefs.
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V. Discussion

In this paper we use neural data, obtained through fMRI while our subjects
trade stocks in an experimental market, to test the key assumptions of the
realization utility theory of investor trading. We find broad (albeit not perfect)
support for the neural predictions of this theory. First, we find that activity in
the vmPFC, an area known to encode decision values, is correlated with the
capital gain (the decision value under realization utility), but not with a mea-
sure of the net expected value of future returns (the decision value under the
expected value model). Second, we find that the strength with which the cap-
ital gain is reflected in the vmPFC decision value signal is correlated, across
subjects, with the proportion of gains realized; we do not, however, find the
analogous correlation for capital losses. Finally, and perhaps most striking of
all, we find that activity in the ventral striatum, an area known to encode infor-
mation about changes in expected lifetime utility, exhibits a positive response
when subjects realize capital gains, controlling for the size of those gains. This
finding is striking because it provides a direct test of the key mechanism at
work in the realization utility model; it would have been very hard to carry out
such a test without neural data.

As noted in the previous paragraph, we do not find a correlation across
individuals between the strength with which a capital loss is reflected in the
vmPFC and the proportion of losses realized. Here we speculate as to why. One
possibility is that the simple model of linear realization utility that we test
is incomplete in important ways. First, recall that individuals who experience
realization utility at the time of selling, and who are sufficiently myopic, will
accelerate the sale of assets involving capital gains and delay the sale of assets
involving capital losses, even though this is suboptimal under the expected
value model. When we compute the decision value of selling for realization
utility traders, we assume that they are fully myopic. However, if the cross-
individual variation in the discount rate for losses is sufficiently larger than
that for gains (a hypothesis that has not yet been tested), then the decision value
of selling a loss will be measured in our regression models with more noise than
the decision value of selling a gain.38 If this is the case, we are more likely to
detect a behavioral-neural correlation for capital gains than for capital losses,
even if subjects experience realization utility in both cases. Second, the cross-
subject correlation between the extent to which capital gains and capital losses
are reflected in the vmPFC is only 0.01, while the cross-subject correlation
between the propensity to realize gains and the propensity to realize losses is
only 0.03. This suggests that individuals may attend differently to gains and

38 Recall from Section II.C that, when computing the decision value of selling for a realization
utility agent, we assume that he is fully myopic. This means that he places zero value on holding
the stock, so that the decision value simply equals the value of selling. If, instead, the agent does
not fully discount the future, the value of holding will be nonzero, and the actual decision value of
selling will be different from what we specify. If there is more heterogeneity in the discount rate
across subjects for losses than for gains, there will be a more severe misspecification in the decision
value of selling a loss compared to the decision value of selling a gain.
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losses in a way that is not captured by our realization utility model (Karlsson,
Loewenstein, and Seppi (2009), Kuhnen and Knutson (2011)).

These modifications of the benchmark realization utility model are inspired
by the data, but are clearly also post-hoc and speculative. The good news, how-
ever, is that the same methodology that we use here can also be applied to test
these alternative specifications. We emphasize that the methods we present in
this paper are not a substitute for traditional empirical methods in finance.
On the contrary, brain imaging techniques are complementary tools that can
be used to test assumptions about investor behavior that are difficult to eval-
uate using field data or experimental data alone. In particular, we see neural
data as a valuable resource when studying the more psychological dimensions
of investor behavior, precisely because these may derive from variables that
are only observable at the neural level. For example, using the same data set
as in this study, we are examining how neural measures of regret, which are
very difficult to measure objectively in the field, can impact trading behavior in
a systematic way (Frydman, Camerer, and Rangel (2012)). The identification
of investors’ reference points—the reference rates of return that they use to
determine whether an investment outcome is a “gain” or a “loss”—is another
challenging question that neural data may help us answer.
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