
Value-based decision making is pervasive in nature. 
It occurs whenever an animal makes a choice from 
several alternatives on the basis of a subjective value 
that it places on them. Examples include basic animal 
behaviours, such as bee foraging, and complicated 
human decisions, such as trading in the stock market. 
Neuroeconomics is a relatively new discipline that stud-
ies the computations that the brain carries out in order 
to make value-based decisions, as well as the neural 
implementation of those computations. It seeks to build 
a biologically sound theory of how humans make deci-
sions that can be applied in both the natural and the 
social sciences.

The field brings together models, tools and tech-
niques from several disciplines. Economics provides 
a rich class of choice paradigms, formal models of the 
subjective variables that the brain needs to compute to 
make decisions, and some experimental protocols for 
how to measure these variables. Psychology provides a 
wealth of behavioural data that shows how animals learn 
and choose under different conditions, as well as theories 
about the nature of those processes. Neuroscience pro-
vides the knowledge of the brain and the tools to study 
the neural events that attend decision making. Finally, 
computer science provides computational models of 
machine learning and decision making. Ultimately, it 
is the computations that are central to uniting these 
disparate levels of description, as computational models 
identify the kinds of signals and signal dynamics that are 
required by different value-dependent learning and deci-
sion problems. However, a full understanding of choice 
will require a description at all these levels.

In this Review we propose a framework for think-
ing about decision making. It has three components: 
first, it divides decision-making computations into five 
types; second, it shows that there are multiple types of 
valuation systems; and third, it incorporates modulat-
ing variables that affect the different valuation processes. 
This framework will allow us to bring together recent 
findings in the field, highlight some of the most impor-
tant outstanding problems, define a common lexicon 
that bridges the different disciplines that inform neuro
economics, and point the way to future applications. The 
development of a common lexicon is important because 
a lot of confusion has been introduced into the literature 
on the neurobiology of decision making by the use of 
the unqualified terms ‘reward’ and ‘value’; as shown  
in the Review, these terms could apply to very different 
computations.

Computations involved in decision making
The first part of the framework divides the computations 
that are required for value-based decision making into 
five basic processes (FIG. 1). The categorization that we 
propose is based on existing theoretical models of deci-
sion making in economics, psychology and computer 
science1–3. Most models in these disciplines assume, 
sometimes implicitly, that all of these processes are 
carried out every time an animal makes a value-based 
decision.

The first process in decision making involves the 
computation of a representation of the decision prob-
lem. This entails identifying internal states (for example, 
hunger level), external states (for example, threat level) 
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Outcome evaluation
How desirable are the outcomes and 

states that followed the action?

Action selection
Choose actions based on valuations
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Update the representation, valuation 

and action-selection processes
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Set of feasible actions?

Internal states?
External states?

Valuation
What is the value of each action 

(given the internal and external states)?

and potential courses of action (for example, pursue 
prey). In the second process, the different actions that 
are under consideration need to be assigned a value 
(valuation). In order to make appropriate decisions, 
these values have to be reliable predictors of the benefits 
that are likely to result from each action. Third, the dif-
ferent values need to be compared for the animal to be 
able to make a choice (action selection). Fourth, after 
implementing the decision, the brain needs to measure 
the desirability of the outcomes. Finally, these feedback 
measures are used to update the other processes to 
improve the quality of future decisions (learning).

The five categories are not rigid, and many ques-
tions remain about how well they match the computa-
tions that are made by the brain. For example, it is not 
known whether valuation (step 2 in our model) must 
occur before action selection (step 3), or whether both 
computations are performed in parallel. Nevertheless, the 
taxonomy is conceptually useful because it breaks down 
the decision-making process into testable constituent 
processes, it organizes the neuroeconomics literature in 
terms of the computations that are being studied, and 
it makes predictions about the neurobiology of deci-
sion making, such as the hypothesis that the brain must 
encode distinct value signals at the decision and outcome 
stages, and the hypothesis that the brain computes a value 
signal for every course of action under consideration.

Representation
The representation process plays an essential part in 
decision making by identifying the potential courses of 
action that need to be evaluated, as well as the internal 

and external states that inform those valuations. For 
example, the valuation that a predator assigns to the 
action ‘chasing prey’ is likely to depend on its level of  
hunger (an internal state) as well as the conditions  
of the terrain (an external variable). Unfortunately, little 
is known about the computational and neurobiological 
basis of this step. Basic open questions include: how does 
the brain determine which actions to assign values to, 
and thus consider in the decision-making process, and 
which actions to ignore? Is there a limit to the number 
of actions that animals can consider at a time? How are 
internal and external states computed? How are the states 
passed to the valuation mechanisms described below?

Valuation at the time of choice
On the basis of a sizable body of animal and human 
behavioural evidence, several groups have proposed the 
existence of three different types of valuation systems: 
Pavlovian, habitual and goal-directed systems4–6 (BOX. 1). 
These systems are sometimes in agreement but often in 
conflict (see section on action selection). It is important 
to emphasize that the precise neural basis of these three 
distinct valuation systems is yet to fully be established. 
Although the evidence described below points to neural 
dissociations between some of the components of the 
three hypothetical systems, it is possible that they do not 
map directly onto completely separate neural systems6–9. 
In fact, it is likely that they share common elements. 
Moreover, even the exact nature and number of valuation 
systems is still being debated. Nevertheless, conceptually 
the three systems provide a useful operational division 
of the valuation problem according to the style of the 
computations that are performed by each.

Pavlovian systems. Pavlovian systems assign values to 
a small set of behaviours that are evolutionarily appro-
priate responses to particular environmental stimuli. 
Typical examples include preparatory behaviours (such 
as approaching cues that predict the delivery of food) and 
consummatory responses to a reward (such as pecking at 
a food magazine). Analogously, cues that predict a punish-
ment or the presence of an aversive stimulus can lead to 
avoidance behaviours. We refer to these types of behav-
iours as Pavlovian behaviours, and to the systems that 
assign value to them as the Pavlovian valuation systems.

Many Pavlovian behaviours are innate, or ‘hard-
wired’, responses to specific predetermined stimuli. 
However, with sufficient training animals can also 
learn to deploy them in response to other stimuli. For 
example, rats and pigeons learn to approach lights that 
predict the delivery of food. An important difference 
between Pavlovian systems and the other two systems 
is that Pavlovian systems assign value to only a small set 
of ‘prepared’ behaviours and thus have a limited behav-
ioural repertoire. Nonetheless, a wide range of human 
behaviours that have important economic consequences 
might be controlled by Pavlovian systems, such as 
overeating in the presence of food, behaviours displayed 
in people with obsessive–compulsive disorders (OCDs) 
and, perhaps, harvesting immediate smaller rewards at 
the expense of delayed larger rewards5,9.

Figure 1 | Basic computations involved in making a choice. Value-based decision 
making can be broken down into five basic processes: first, the construction of a 
representation of the decision problem, which entails identifying internal and external 
states as well as potential courses of action; second, the valuation of the different actions 
under consideration; third, the selection of one of the actions on the basis of their 
valuations; fourth, after implementing the decision the brain needs to measure the 
desirability of the outcomes that follow; and finally, the outcome evaluation is used to 
update the other processes to improve the quality of future decisions.
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Valence
The appetitive or aversive 
nature of a stimulus. 

At first glance, Pavlovian behaviours look like 
automatic, stimulus-triggered responses, and not like 
instances of value-based choice. However, as Pavlovian 
responses can be interrupted by other brain systems, 
they must be assigned something akin to a ‘value’ so that 
they can compete with the actions that are favoured by 
the other valuation systems.

Characterizing the computational and neural basis of 
Pavlovian systems has so far proven difficult. This is due 
in part to the fact that there might be multiple Pavlovian 
controllers, some of which might be responsible for trig-
gering outcome-specific responses (for example, peck-
ing at food or licking at water) whereas others might be 
responsible for triggering more general valence-dependent  
responses (for example, approaching for positive  
outcomes or withdrawing from negative ones).

The neural bases of active and passive Pavlovian 
responses to negative stimuli seem to have specific and 
spatial organizations along an axis of the dorsal peri-
aqueductal grey10. With respect to valence-dependent 
responses, studies that used various species and methods 
suggested that a network that includes the basolateral 
amygdala, the ventral striatum and the orbitofrontal 
cortex (OFC) underlies the learning processes through 
which neutral stimuli become predictive of the value of 
outcomes11,12. In particular, the amygdala has been shown 
to play a crucial part in influencing some Pavlovian 
responses8,13–15. Specifically, the central nucleus of the amyg
dala, through its connections to the brainstem nuclei and 
the core of the nucleus accumbens, seems to be involved 
in nonspecific preparatory responses, whereas the baso-
lateral complex of the amygdala seems to be involved 
in more specific responses through its connections  
to the hypothalamus and the periaqueductal grey.

It is not currently known how many Pavlovian sys-
tems exist or how they interact with each other. Other 
important questions are whether there is a common 
carrier of Pavlovian value and, if so, how it is encoded; 
whether learning is possible within these systems; and 
how Pavlovian systems interact with the other valu-
ation systems — for example, in phenomena such as 
Pavlovian-instrumental transfer4.

Habit systems. In contrast to Pavlovian systems, which 
value only a small set of responses, habit systems can 
learn, through repeated training, to assign values to 
a large number of actions. Habit-valuation systems 
have a number of key characteristics. First, they learn 
to assign values to stimulus–response associations 
(which indicate the action that should be taken in a 
particular state of the world), on the basis of previous 
experience, through a process of trial-and-error (see 
the learning section below). Second, subject to some 
technical qualifications, habit systems learn to assign a 
value to actions that is commensurate with the expected 
reward that these actions generate, as long as sufficient 
practice is provided and the environment is sufficiently 
stable3,6,16. Third, because values are learned by trial-
and-error, habit systems are believed to learn relatively 
slowly. As a consequence, they might forecast the value 
of actions incorrectly immediately after a change in the 
action–reward contingencies. Finally, these systems 
rely on ‘generalization’ when assigning action values in 
novel situations. For example, a rat that has learned to 
lever-press for liquids in response to a sound cue might 
respond with a similar behaviour when first exposed to 
a light cue. We refer to the actions that are controlled by 
these systems as ‘habits’ and the values that they compute 
as ‘habit values’. Examples of habits include a smoker’s 
desire to have a cigarette at particular times of day (for 
example, after a meal) and a rat’s tendency to forage in a 
cue-dependent location after sufficient training.

Studies using several species and methods suggest that 
the dorsolateral striatum might play a crucial part in the 
control of habits17,18. As discussed below, the projections 
of dopamine neurons into this area are believed to be 
important for learning the value of actions. Furthermore, 
it has been suggested that stimulus–response represen-
tations might be encoded in cortico-thalamic loops18. 
Lesion studies in rats have shown that the infralimbic 
cortex is necessary for the establishment and deployment  
of habits19,20.

There are many open questions regarding habit sys-
tems. Are there multiple habit systems? How do habitual 
systems value delayed rewards? What are the limits on the 
complexity of the environments in which the habit system 
can learn to compute adequate action values? How does 
the system incorporate risk and uncertainty? How much 
generalization is there from one state to another in this 
system (for example, from hunger to thirst)?

Goal-directed systems. In contrast to the habit system, the 
goal-directed system assigns values to actions by comput-
ing action–outcome associations and then evaluating the 
rewards that are associated with the different outcomes. 

Box 1 | Examples of behaviours driven by different valuation systems

Behaviour can be driven by different valuation systems. These systems can operate in 
the domain of rewards (that is, appetitive outcomes) and punishments (that is, aversive 
outcomes). Although the exact number of valuation systems and their scope remain to 
be determined, it is known that behaviour can be influenced by Pavlovian, habitual and 
goal-directed evaluators. The table contains examples of behaviours that are 
characteristic of each system. Consummatory actions, such as eating food that is within 
reach, are assigned a high value by the Pavlovian system regardless of the state of 
hunger. Routine actions, such as having a cup of coffee in the morning, are assigned a 
high value by the habitual system regardless of that morning’s particular needs. Choices 
that are made infrequently, such as which movie to see, are assigned values by the  
goal-directed system.

Valuation 
system

Valence

Appetitive (rewards) Avoidance (punishments)

Pavlovian Eat all food on plate  

Reward obtained: food

Cross street upon seeing 
dangerous person 

Punishment avoided: potential 
harm

Habitual Morning cup of coffee 

Reward obtained: stimulant

Drive usual route to work 

Punishment avoided:traffic

Goal-directed Movie selection 

Reward obtained: 
entertainment

Go for a run 

Punishment avoided: obesity
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Propositional logic system
A cognitive system that makes 
predictions about the world on 
the basis of known pieces of 
information.

Under ideal conditions, the value that is assigned to an 
action equals the average reward to which it might lead. 
We refer to values computed by this system as ‘goal val-
ues’ and to the actions that it controls as ‘goal-directed 
behaviours’. An example of a goal-directed behaviour is 
the decision of what to eat at a new restaurant.

Note that an important difference between habitual 
and goal-directed systems has to do with how they 
respond to changes in the environment. Consider, for 
example, the valuations made by a rat that has learned to 
press a lever to obtain food, after it is fed to satiation. The 
goal-directed system has learned to associate the action 
‘lever-press’ with the outcome ‘food’ and thus assigns a 
value to the lever-press that is equal to the current value 
of food — which in this example is low because the 
animal has been fed to satiation. By contrast, the habit 
system assigns a high value to the lever-press because 
this is the value that it learned during the pre-satiation 
training. Thus, the goal-directed system updates the 
value of an action as soon as the value of its outcome 
changes, whereas the habit system does not.

To carry out the necessary computations, the goal-
directed system needs to store action–outcome and 
outcome–value associations. Unfortunately, relatively 
little is known about the neural basis of these processes. 
Several rat lesion studies suggest that the dorsomedial 
striatum has a role in the learning and expression of 
action–outcome associations21, whereas the OFC might 
be responsible for encoding outcome–value associa-
tions. Consistent with this, monkey electrophysiology 
studies have found appetitive goal-value signals in 
the OFC and in the dorsolateral prefrontal cortex 
(DLPFC)22–25. Electrophysiology experiments in rats 
point to the same conclusion26. In a further conver-
gence of findings across methods and species, human 
functional MRI (fMRI) studies have shown that blood-
oxygen-level-dependent (BOLD) activity in the medial 
OFC27–31 and the DLPFC28 correlates with behavioural 
measures of appetitive goal values, and individuals 
with damage to the medial OFC have problems making 
consistent appetitive choices32. Several lines of evidence 
from these various methods also point to an involve-
ment of the basolateral amygdala and the mediodorsal 
thalamus (which, in combination with the DLPFC, 
form a network that Balleine has called the “associative 
cortico-basal-ganglia loop” (Ref. 17)).

Several questions regarding this system remain 
unanswered. Are there specialized goal-directed systems 
for reward and punishment, and for different types of 
goals? How are action–outcome associations learned? 
How does the goal-directed system assign value to famil-
iar and unfamiliar outcomes? How are action–outcome 
associations activated at the time that a choice has to 
be made?

For complex economic choices (such as choosing 
among detailed health-care plans), we speculate that, 
in humans, propositional logic systems have a role in  
constructing associations that are subsequently evalu-
ated by the goal-directed system. For example, individu-
als might use a propositional system to try to forecast 
the consequences of a particular action, which are then 

evaluated by the goal-directed system. This highlights a 
limitation of the goal-directed system: the quality of its 
valuations is limited by the quality of the action–outcome  
associations that it uses.

Outstanding issues. Some general, important ques-
tions regarding the different valuation systems remain 
unanswered. First, are there multiple Pavlovian, habitual 
and goal-directed valuation systems, with each system 
specializing in particular classes of actions (in the case 
of the Pavlovian and habit systems) or outcomes (in the 
case of the goal-directed system)? For example, consider 
a dieter who is offered a tasty dessert at a party. If this 
is a novel situation, it is likely to be evaluated by the 
goal-directed system. The dieter is likely to experience 
conflict between going for the taste of the dessert and 
sticking to his health goals. This might entail a conflict 
between two goal-directed systems, one that is focused 
on the evaluation of immediate taste rewards and one 
that is focused on the evaluation of long-term outcomes. 
Second, are there more than three valuation systems? 
Lengyel and Dayan5,33 have proposed the existence of an 
additional, ‘episodic’ system. At this point it is unclear 
how such a system differs both conceptually and neu-
rally from the goal-directed system. Third, how does 
the brain implement the valuation computations of the 
different systems? Finally, how do long-term goals, cul-
tural norms and moral considerations get incorporated 
into the valuation process? One possibility is that the 
habit and goal-directed systems treat violations of these 
goals and cultural and moral rules as aversive outcomes, 
and that compliance with them is treated as a reward-
ing outcome34. However, this can be the case only if the 
brain has developed the capacity to incorporate social 
and moral considerations into its standard valuation 
circuitry. Another possibility is that there are separate 
valuation systems for these types of considerations that 
are yet to be discovered.

Modulators of the valuation systems
Several factors can affect the values that the Pavlovian, 
habitual and goal-directed systems assign to actions. For 
example, the value that is assigned to an action might 
depend on the riskiness of its associated payoffs, the 
delay which with those payoffs occur and the social 
context. We refer to these types of variables as value 
modulators. Importantly, modulators might have dif-
ferent effects in each of the valuation systems. In this 
section we focus on the impact of risk and delay on the 
goal-directed valuation system, as most of the existing 
evidence pertains to this system. For reviews on social 
modulators, see REFS 35,36.

Risk and uncertainty. All decisions involve some degree 
of risk, in the sense that action–outcome associations 
are probabilistic (BOX 2). We refer to an action that has 
uncertain rewards as a ‘prospect’. In order to make good 
decisions, the goal-directed system needs to take into 
account the likelihood of the different outcomes. Two 
hotly debated questions are: first, what are the computa-
tions that the goal-directed system uses to incorporate 
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risks into its valuations; and second, how does the brain 
implement such computations37?

Early human neuroimaging studies in this topic identi-
fied some of the areas that are involved in making risky 
decisions, but were not able to characterize the nature of the 
computations made by these systems38–41. Currently, two 
main competing views regarding the nature of such com-
putations are being tested. The first view, which is widely 
used in financial economics and behavioural ecology,  

asserts that the brain assigns value to prospects by first 
computing its statistical moments (such as its expected 
magnitude, its variance or coefficient of variation, and 
its skewness) and then aggregating them into a value 
signal42,43. The second view, which is widely used in other 
areas of economics and in psychology, asserts that the 
value is computed using either expected-utility theory (EU) 
or prospect theory (PT) (BOX 2). In this case the brain needs 
to compute a utility value for each potential outcome, 
which is then weighted by a function of the probabilities.

Decisions that result from an EU or PT valuation 
function can be approximated by a weighted sum of 
the prospects’ statistical moments (and vice versa). This 
makes it difficult to distinguish the two views on the basis 
of behavioural data alone. Neuroimaging studies can 
provide important insights, although the debate between 
the two views has not yet been settled. In agreement  
with the first view, a number of recent human fMRI 
studies have found activity that is consistent with the 
presence of expected value signals in the striatum44,45 and 
the medial OFC46, and activity that is consistent with risk 
signals (as measured by the mathematical variance of 
the prospects) in the striatum44,47, the insula46,48 and the 
lateral OFC45. Similar risk and expected-value signals 
have been found in the midbrain dopamine system in 
electrophysiology studies in non-human primates49. 
Expected-value signals (BOX 2) have also been found in 
the lateral intraparietal cortex in non-human primate 
electrophysiology experiments50. Consistent with the 
second view, a recent human fMRI study found evidence 
for a PT-like value signal in a network that includes the 
ventral and dorsal striatum, the ventromedial and ventro
lateral prefrontal cortex, the anterior cingulate cortex 
(ACC) and some midbrain dopaminergic regions27.  
The existence of evidence that is consistent with both 
views presents an apparent puzzle. A potential resolu-
tion that should be explored in future studies is that the 
striatal-prefrontal network might integrate the statistical 
moments that are encoded elsewhere into a value signal 
that exhibits EU- or PT-like properties.

In many circumstances, decision makers have 
incomplete knowledge of the risk parameters — a situa-
tion known as ambiguity that is different from the pure 
risk case in which the probabilities are known. Human 
behavioural studies have shown that people generally 
have an aversion to choices that are ambiguous51, which 
suggests that a parameter that measures the amount of 
ambiguity might be encoded in the brain and might be 
used to modulate the value signal. Some preliminary 
human fMRI evidence points to the amygdala, the OFC52 
and the anterior insula53 as areas where such a parameter 
might be encoded.

Some issues regarding risk and valuation are still 
unclear. First, little is known about how risk affects the 
computation of value in Pavlovian and habitual systems. 
For example, most reinforcement learning models (see 
below) assume that the habit learning system encodes a 
value signal that incorporates expected values but not 
risks. This assumption, however, has not been thoroughly 
tested. Second, little is known about how the brain learns 
the risk parameters. For example, some behavioural 

 Box 2 | Risk modulators of value in the goal-directed system

Many decisions involve 
the valuation of rewards 
and costs that occur 
probabilistically, often 
called ‘prospects’. There 
are two dominant 
theories in economics 
about how valuation 
systems incorporate 
probability in the 
assignment of value. In 
expected-utility theory 
(EU), the value of a 
prospect equals the sum 
of the value of the 
individual outcomes, 
v(x), weighted by their 
objective probability, 
p(x), which is given by 
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Σxp(x)v(x) . Under some 
special assumptions on 
the function v(.), which are popular in the study of financial markets, the EU formula 
boils down to a weighted sum of the expected value and the variance of the prospect42. 
The appeal of EU comes from the fact that it is consistent with plausible normative 
axioms for decision making, from its mathematical tractability and from its success in 
explaining some aspects of market behaviour. An alternative approach, called prospect 
theory (PT), states that the value of a prospect equals

Nature Reviews | Neuroscience

Σx π(p(x))v(x – r), where the values 
of the outcomes now depend on a reference point, r, and are weighted by a nonlinear 
function, π(.), of the objective probabilities122,123. Reference-dependence can create 
framing effects (analogous to figure–ground switches in vision), in which different 
values are assigned to the same prospect depending on which reference point is 
cognitively prominent. The figure illustrates the usual assumptions that are imposed  
in the value and probability functions by the two theories. As shown in parts a and c, in  
EU the value function, v(.), is a concave function of outcomes, and the probability 
function is the identity function. Note that a special case that is often used in the 
experimental neuroeconomics literature is v(x) = x, which makes the EU function reduce 
to the expected value of the prospect. The properties of PT are illustrated in parts b and 
d. The value function is usually revealed by choices to be concave for gains but convex 
for losses. This assumption is justified by the psychologically plausible assumption of 
diminished marginal sensitivity to both gains and losses starting from the reference 
point. PT also assumes that v(x) < –v(–x) for x > 0, a property called ‘loss-aversion’, which 
leads to a kink in the value function. Part d illustrates the version of PT in which small 
probabilities are overweighted and large probabilities are underweighted. PT has been 
successful in explaining some behaviour that was inconsistent with EU theory in 
behavioural experiments with humans123 and monkeys124, as well as economic field 
evidence125.

Neuroeconomists make a distinction between prospects that involve risk and those 
that involve ambiguity. Risk refers to a situation in which all of the probabilities are 
known. Ambiguity refers to a situation in which some of the probabilities are unknown. 
The EU and PT models described above apply to valuation under risk, but not under 
ambiguity. Several models of valuation under ambiguity have been proposed, but none 
of them has received strong empirical support51,126,127.
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evidence suggests that habit and goal-directed systems 
learn about probabilities in different ways and that 
this leads to different probability weighting by the two 
systems54. Finally, more work is required to better char-
acterize the nature of the computations that are made 
by the amygdala and the insula in decision making 
under uncertainty. Preliminary insights suggest that the  
amygdala might have an asymmetric role in the evalu-
ation of gains and losses. For example, humans with 
amygdala damage made poor decisions if the deci-
sions involved potential gains, but not if they involved 
losses55, and a related study showed that the amygdala 

is differentially activated when subjects decide to take 
risks for large gains and when they decide to accept a 
sure loss56.

Time discounting. In all real-world situations there is 
a time lag between decisions and outcomes. From a 
range of behavioural experiments it is well-established 
that the goal-directed and habitual systems assign lower 
values to delayed rewards than to immediate ones; this 
phenomenon is known as time discounting57. The role 
of time discounting in the Pavlovian system is not as 
well-understood. As before, we focus on the impact of 
temporal discounting on the goal-directed system, as 
this is where most of the studies so far have focused.

The current understanding of time discounting 
parallels that for risk: two competing views have been 
proposed and are being tested using a combination of 
human-behavioural and neuroimaging experiments. 
One camp interprets the human fMRI evidence using 
the perspective of dual-process psychological models and 
has argued that discounting results from the interaction 
of at least two different neural valuation systems (BOX 3), 
one with a low discount rate and one with a high dis-
count rate58–60. In this view, the patience that is exhibited 
by any given individual when making decisions depends 
on the relative activation of these two systems. In sharp 
contrast, the other camp has presented human fMRI 
evidence that suggests that there is a single valuation sys-
tem that discounts future rewards either exponentially 
or hyperbolically61 (BOX 3). As with the situation for risk 
valuation, this presents an apparent puzzle. A potential 
reconciliation is that the striatal-prefrontal network 
might integrate information that is encoded elsewhere 
in the brain into a single value signal, but that immedi-
ate and delayed outcomes might activate different types 
of information that are used to compute the value. For 
example, immediate rewards might activate ‘immediacy 
markers’ that increase the valuation signals in the striatal-
prefrontal network. An understanding of these issues is 
also important from the perspective of brain develop-
ment. When do value signals get computed in their ‘adult’ 
form and how do they contribute to choices made by chil-
dren and adolescents? These and other related questions 
show that the economic framing of decision making will 
continue to provide new ways to probe the development 
and function of choice mechanisms in humans.

Time discounting remains a fruitful topic of investiga-
tion. First, the discounting properties of Pavlovian and 
habitual systems in humans have not been systematically 
explored. Second, the inputs to the valuation network are 
unknown, as is the reason why the aggregation of those 
inputs produces a hyperbolic-like signal in valuation 
areas such as the ventral striatum and the medial OFC. 
Third, the behavioural evidence suggests that discount 
factors are highly dependent on contextual variables. 
For example, subjects’ willingness to delay gratification 
depends on whether the choice is phrased as a “delay” 
or as a “choice between two points in time” (Ref. 62), on 
how they are instructed to think about the rewards63 
and on the subjects’ arousal level64. The mechanisms 
through which such variables affect the valuation process  

 Box 3 | Temporal modulators of value in the goal-directed system

Many decisions involve the evaluation of rewards and costs that arrive with different 
delays. Thus, the valuation systems require a mechanism for incorporating the timing of 
rewards into their computations. Two prominent models of discounting have been 
proposed in psychology and economics. In the first model, known as hyperbolic 
discounting, rewards and costs that arrive t units of time in the future are discounted by 
a factor 1/(1+kt). Note that the discount factor is a hyperbolic function of time and that a 
smaller k is associated with less discounting (that is, more patience). In the second 
model, known as exponential discounting, the corresponding discount factor is g t. Note 
that a value of g closer to one is associated with more patience. An important distinction 
between the two models is illustrated in parts a and c of the figure, which depict the 
value of a reward of size R t units of time before it arrives. Note that whereas every 
additional delay is discounted at the same rate (g) in the exponential case, in hyperbolic 
discounting initial delays are discounted at a much higher rate and the discount curve 
flattens out for additional delays.

In most comparative behavioural studies of goal-directed behaviour with adequate 
statistical power, hyperbolic discount functions always fit the observed behaviour 
better than exponential functions57. Nevertheless, economists and computer scientists 
find the exponential function appealing because it is the only discount function that 
satisfies the normative principle of dynamic consistency, which greatly simplifies 
modelling. This property requires that if a reward, A, is assigned a higher value than 
another reward, B, at time t, then the same reward is also assigned a higher value when 
evaluated at any time t–k. Under hyperbolic discounting, by contrast, the relative 
valuation between the two actions depends on when the choice is made. This is known 
as dynamic inconsistency. Parts b and d of the figure illustrate this difference. They 
depict the comparative value of a reward, RA, received at time 0 with a reward, RB, 
received at time t′ as a function of the time when the rewards are being evaluated. Note 
that in the exponential case the relative desirability of the two rewards is constant, 
whereas for the hyperbolic case it depends on the time of evaluation.
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HabitualPavlovian Goal-directed

Example: hungry animal 
presented with food and 
electric shock simultaneously

Appetitive Pavlovian system:
high value for food, low 
value for escape behaviours

Avoidance Pavlovian system:
high value for escape
behaviours, low value for 
food

Example: animal rewarded for
running away from food

Appetitive Pavlovian system:
high value for running 
towards food

Avoidance habitual system:
high value for running away
from food

Example: individual 
considering taking an extra 
bite after feeling full

Appetitive Pavlovian 
system: high value for food

Health goal-directed 
system: low value for food

Example: an animal trained to 
run towards a lever in response 
to a sound and away from a 
lever in response to a light being
presented with both stimuli

Approach habitual system:
high value for lever approach

Avoidance habitual system:
high value for lever avoidance

Example: alcoholic 
considering having a drink 
at a bar

Appetitive habitual system:
high value for drink

Avoidance goal-directed 
system: low value for drink

Example: dieter considering 
having ice-cream

Appetitive goal-directed 
system: high value for 
ice-cream

Avoidance goal-directed 
system: low value for 
ice-cream
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Dual-process models
A class of psychological models 
in which two processes with 
different properties compete 
to determine the outcome of a 
computation.

Race-to-barrier diffusion 
process
A stochastic process that 
terminates when the variable 
of interest reaches a certain 
threshold value.

are unknown. Fourth, several studies have shown that 
the anticipation of future rewards and punishments 
can affect subjects’ behavioural discount rates65,66. 
The mechanisms through which anticipation affects 
valuation are also unknown. Finally, animals make very 
myopic choices that are consistent with large hyperbolic 
discount rates67–70. How do humans and animals differ 
in the way in which they incorporate temporal delays 
into the valuation process?

Action selection
Even for choices that involve only one of the valuation 
systems discussed above, options with different val-
ues need to be compared in order to make a decision. 
Little is known about how the brain does this. The only 
available theoretical models come from the literature  
on perceptual decision making, which has modelled binary  
perceptual choices as a race-to-barrier diffusion process71–76. 
However, it is unclear whether this class of model also 
applies to value-based decision making and, if so, how the 
models might be extended to cases of multi-action choice.

Another issue is the competition that arises among the 
different valuation systems when an animal has to make a 
choice between several potential actions that are assigned 
conflicting values (FIG. 2). Some preliminary theoretical 

proposals have been made, but the experimental evi-
dence is scarce. Daw et al.77 have suggested that the brain 
arbitrates between the habit and goal-directed valuation 
systems by assigning control to the system that at any 
given time has the less uncertain estimate of the true 
value of the actions. As the quality of the estimates that 
are made by the habit system increases with experience, 
this means in practice that the habit system should gradu-
ally take over from the goal-directed system34. Frank has 
proposed a neural-network model for choice between 
appetitive and aversive habitual valuations78,79.

Understanding how the ‘control assignment’ prob-
lem is resolved is important for several reasons. First, as 
illustrated in FIG. 2 and as emphasized by Dayan et al.9, 
many apparently puzzling behaviours are likely to arise 
as a result of the conflict between the different valuation 
systems. Second, in most circumstances the quality of 
decision making depends on the brain’s ability to assign 
control to the valuation system that makes the best value 
forecasts. For example, it is probably optimal to assign 
control to the habit system in familiar circumstances, 
but not in rapidly changing environments. Third, some 
decision-making pathologies (for example, OCD and 
overeating) might be due to an inability to assign control 
to the appropriate system.

Figure 2 | Conflict between the valuation systems. The different valuation systems are often in agreement. For 
example, when an individual is hungry at meal time, the Pavlovian, habitual and goal-directed systems assign high value to 
the consumption of food. However, conflicts between the systems are also common and might lead to poor decision 
making. This figure provides examples of conflict among the different valuation systems and of conflict among different 
value signals of the same type.
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There are many important open questions in the 
domain of action selection. First, in the case of goal-
directed decisions, does the brain make decisions by 
comparing the value of outcomes, of the actions that are 
necessary to achieve those outcomes, or both? Second, 
what is the neural basis of the action-selection processes 
in the Pavlovian, habitual and goal-directed systems? 
Third, what are the neural mechanisms that are used to 
arbitrate between the different controllers, and is there 
a hierarchy of controllers so that some (for example, 
Pavlovian systems) tend to take precedence over others 
(for example, goal-directed systems)? Fourth, are there 
any neural markers that can be reliably used to identify 
goal-directed or habitual behavioural control?

Outcome evaluation
In order to learn how to make good decisions the brain 
needs to compute a separate value signal that measures 
the desirability of the outcomes that were generated by 
its previous decisions. For example, it is useful for an ani-
mal to know whether the last food that it consumed led 
to illness so that it can know whether it ought to avoid 
that food in the future.

The computations that are made by the outcome-
evaluation system, as well as the neural basis of these 
computations, are slowly beginning to be understood. 
The existing evidence comes from several different 
methods and species. Human fMRI studies have shown 
that activity in the medial OFC at the time that a reward 
is being enjoyed correlates with subjective reports about 
the quality of the experience — this has been shown for 
olfactory80–83, gustatory84–86 and even musical rewards87. 
Moreover, the activity in the medial OFC parallels the 
reduction in outcome value that one would expect after 
a subject is fed to satiation88,89. This suggests that the 
medial OFC might be an area where positive outcome 
valuations are computed. Interestingly, other human 
fMRI studies have found positive responses in the 
medial OFC to the receipt of secondary reinforcers, such 
as monetary payoffs90–92. Analogous results have been 
found for negative experiences: in humans, subjective 
reports of pain intensity correlated with activity in the 
insula and the ACC93,94.

Animal studies have also provided insight into the 
neural basis of the outcome-value signal. A recent electro
physiology experiment in monkeys found outcome-
value signals in the dorsal ACC95. In addition, a series 
of provocative rat studies showed that it is possible to 
increase outward manifestations of ‘liking’ in rats (for 
example, tongue protrusions) by activating the nucleus 
accumbens and subsets of the ventral pallidum using 
opioid agonists85,96–98. Interestingly, and consistent with 
the hypothesis that outcome-evaluation signals play a 
part in learning, rats that received opioid agonists sub-
sequently consumed more of the reward that was paired 
with the agonist.

Some recent human fMRI experiments have also 
provided novel insights into the computational proper-
ties of the outcome-value signal. For example, one study 
showed that activity in the medial OFC in response to 
an odour depended on whether subjects believed that 

they were smelling cheddar cheese or a sweaty sock83. In 
another study99, activity in the medial OFC in response 
to the consumption of wine depended on beliefs about 
its price, and a third study 84 showed that the outcome-
valuation signal after consumption of soda depended on 
beliefs about its brand. Together, these findings suggest 
that the outcome-valuation system is modulated by 
higher cognitive processes that determine expectancies 
and beliefs.

Much remains to be understood about the outcome-
valuation system. What network is responsible for com-
puting positive and negative outcome values in different 
types of domains? How are positive and negative outcome-
valuation signals integrated? How are these signals passed 
to the learning processes described in the next section? 
Can they be modulated by variables such as long-term 
goals, social norms and moral considerations?

Learning
Although some Pavlovian behaviours are innate 
responses to environmental stimuli, most forms of 
behaviour involve some form of learning. In fact, in 
order to make good choices animals need to learn how 
to deploy the appropriate computations during the dif-
ferent stages of decision making. First, the brain must 
learn to activate representations of the most advanta-
geous behaviours in every state. This is a non-trivial 
learning problem given that animals and humans have 
limited computational power, and yet they can deploy 
a large number of behavioural responses. Second, the 
valuation systems must learn to assign to actions values 
that match their anticipated rewards. Finally, the action-
selection processes need to learn how to best allocate 
control among the different valuation systems.

Of all of these processes, the one that is best- 
understood is the learning of action values by the habit 
system. In this area there has been a productive inter-
play between theoretical models from computer science 
(BOX 4) and experiments using electrophysiology in rats 
and monkeys and fMRI in humans. In particular, various 
reinforcement learning models have been proposed to 
describe the computations that are made by the habit 
system3,100. The basic idea behind these models is that a 
prediction-error signal is computed after observing the 
outcome generated by every choice. The signal is called 
a prediction error because it measures the quality of 
the forecast that was implicit in the previous valuation 
(BOX 4). Every time a learning event occurs, the value of 
the actions is changed by an amount that is proportional 
to the prediction error. Over time, and under the appro-
priate technical conditions, the animal learns to assign 
the correct value to actions.

The existence of prediction-error-like signals in 
the brain is one of the best-documented facts in neuro
economics. Schultz and colleagues initially observed 
such signals in electrophysiology studies performed 
in midbrain dopamine neurons of monkeys101–106. 
The connection between these signals and reinforce-
ment-learning models was made in a series of papers 
by Montague and colleagues that were published in 
the 1990s103,107. Since then, several fMRI studies have 
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shown that, in humans, the BOLD signal in the ventral 
striatum (an important target of midbrain dopamine 
neurons) correlates with prediction errors in a wide 
range of tasks29,90,108–113.

Although the existing evidence suggests that there is a 
remarkable match between the computational models and 
the activity of the dopamine system, recent experiments 
have demonstrated that much remains to be understood. 
First, a monkey electrophysiology study114 suggested that 
the phasic firing rates of midbrain dopamine neurons 
might only encode the positive component of the predic-
tion error (henceforth the ‘positive prediction error’). 
This raises the question of which brain areas and neuro
transmitter systems encode the negative component 
(henceforth the ‘negative prediction error’), which is 
also essential for learning. Several possibilities have 
been proposed. A secondary analysis115 of the monkey  

electrophysiology experiment114 suggested that the mag-
nitude of the negative prediction errors might be encoded 
in the timing of the fire-and-pause patterns of the 
dopamine cells115. Some human fMRI studies have found 
a BOLD signal in the amygdala that resembles a nega-
tive prediction error108, but others have failed to replicate 
this finding and have instead found evidence for both 
types of prediction error in different parts of the stria-
tum116. In turn, Daw and Dayan117 proposed that the two  
prediction-error signals are encoded by the phasic 
responses of two neurotransmitter systems: dopamine 
for positive prediction errors and serotonin for negative 
prediction errors. Second, it was shown that midbrain 
dopamine neurons adjust their firing rates to changes 
in the magnitude of reward in a way that is inconsistent 
with the standard interpretation of prediction errors49. 
The exact nature of these adjustments remains an open 

 Box 4 | Reinforcement learning models action-value learning in the habitual system

Several models from computer science have proved to be useful in modelling how the habitual system learns to assign 
values to actions. All of these models have the following structure, which is known as a Markovian decision problem: first, 
the animal can be in a finite set of states and can take a finite set of actions; second, there is a transition function, T(s,a,s’), 
that specifies the probability that state s and action a at one time-step will result in the state s′ at the next time-step; and 
third, at every time-step the animal obtains an action and a state-contingent reward, r(a,s). A behavioural rule in this 
world (called a policy and denoted by π(s)) specifies the action that the animal takes in every state. In this world the 
habitual system needs to solve two problems. First, given a policy, it needs to compute the value of taking every action a 
in every state s. This is given by

Nature Reviews | Neuroscience

Qπ(s, a) = E[rt + γrt + 1 + γ2rt + 2 + γ3rt + 3 + … | st = s, at = a, at + 1 = π(st + 1),…];   (1)

where rt + k denotes the reward that is received at time t + k and where γ > 0 is the discount rate. Second, it needs to 
identify the policy that generates the largest sum of exponentially discounted rewards (see BOX 3) in every state.

How could the habitual system learn Qπ (s,a)? Let 

Nature Reviews | Neuroscience

Qπ(s, a) denote the estimate that the system has at any point in time. 
Equation 1 can be rewritten in recursive form as

Nature Reviews | Neuroscience

Qπ(s, a) = R (s) + γ Σ T (s, a, s´) Qπ (s´, π (s´))
s´∈S

(2)

Consider an estimator, 
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Q(s, a)ˆ , of 
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Qπ(s, a) . Note that if 

Nature Reviews | Neuroscience

Q(s, a)ˆ does not satisfy this expression, then it is not a good 
estimate of the value function. Define a prediction error
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ˆ ˆδt = rt  + γ maxa´ [Q(st + 1, a´)] – Q(st, at)   (3)

that is a sample measure of how close the estimate is to satisfying equation 2. If  

Nature Reviews | Neuroscience

ˆ ˆδt = rt  + γ maxa´ [Q(st + 1, a´)] – Q(st, at) > 0 the value of the action is 
overestimated; if  

Nature Reviews | Neuroscience

ˆ ˆδt = rt  + γ maxa´ [Q(st + 1, a´)] – Q(st, at) < 0 the value is underestimated. One can then use the prediction error to update the estimates of the 
action values as follows:

Nature Reviews | Neuroscience

ˆ ˆQ(st, at) ← Q(st, at) + ηδt   (4)

where η is a number between 0 and 1 that determines the speed of learning. This model is known as Q‑learning and it 
satisfies one important property: subject to some technical conditions, the estimated action values converge to those 
that are generated by the optimal policy. It then follows that the animal can learn the optimal policy simply by following 
this algorithm and, at every step of the learning process, selecting the actions with the largest values. Two other variants 
of this model have been proposed as descriptions of how the habitual system learns. They are known as SARSA and the 
actor–critic model. They differ from Q‑learning on the exact specification of the prediction error and the update rule, but 
they are based on essentially the same idea. Note that neither SARSA nor the actor–critic model is guaranteed to 
converge to the optimal policy.

It is worth emphasizing several properties of these learning models. First, they are model-free in the sense that the 
animal is not assumed to know anything about the transition function or the reward function. Second, they explain a 
wide range of conditioning behaviours that are associated with the habitual system, such as blocking, overshadowing 
and inhibitory conditioning. Finally, they are computationally simple in the sense that they do not require the animal to 
keep track of long sequences of rewards to learn the value of actions.

The reinforcement-learning models described here are often used to describe the process of action-value learning in 
the habitual system. The algorithms that the Pavlovian and goal-directed systems use to update their values based on 
feedback from the environment are currently unknown.
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Credit-assignment problem
The problem of crediting 
rewards to particular actions in 
complex environments.

question43. Finally, a study showed that the habit system 
can also learn from observing the outcomes of actions 
that it did not take, as opposed to only being able to learn 
from direct experience118. This form of ‘fictive learning’ 
is not captured by traditional reinforcement-learning 
models but is common in human strategic learning and 
suggests that the theory needs to be extended in new 
directions (to include, among others, imitative learning 
from observing the actions of others)119.

Other important questions in the domain of value 
learning include the following: how does the goal-
directed system learn the action-outcome and outcome-
value representations that it needs to compute action 
values? What are the limitations of the habit system in 
situations in which there is a complex credit-assignment  
problem (because actions and outcomes are not  
perfectly alternated) and delayed rewards? How does the 
habit system learn to incorporate internal and external 
states in its valuations and generalize across them? How 
do the different learning systems incorporate expected 
uncertainty about the feedback signals43? To what extent 
can the different value systems learn by observation as 
opposed to through direct experience120?

The next 5 years and beyond
Although neuroeconomics is a new field and many central 
questions remain to be answered, rapid progress is being 
made. As illustrated by the framework provided in this 
Review, the field now has a coherent lexicon and research 
aims. The key challenge for neuroeconomics over the next 
few years is to provide a systematic characterization of the 
computational and neurobiological basis of the represen-
tation, valuation, action-comparision, outcome-valuation 
and value-learning processes described above. This will 
prove to be challenging because, as we have seen, at least 

three valuation systems seem to be at work, fighting over 
the control of the decision-making process.

Nevertheless, several welcome developments suggest 
that the next 5 years will produce significant progress 
in answering many of the questions outlined here. 
First, there is the close connection between theory and 
experiments, and the widespread use of theory-driven 
experimentation (including behavioural parameters 
inferred from choices that can be linked across subjects 
or trials to brain activity). Second, there is the rapid 
adoption of new technologies, such as fast cyclic vol-
tammetry in freely moving animals121, which permits 
quasi-real-time monitoring of neurotransmitter levels 
for long periods. Third, there is the investigation of 
decision-making phenomena using different species 
and experimental methods, which permits more rapid 
progress.

This is good news, because the range of potential 
applications is significant. The most important area in 
which knowledge from neuroeconomics can be applied 
is psychiatry. Many psychiatric disorders involve a fail-
ure of one or more of the decision-making processes  
described here (BOX 5). A better understanding of 
these processes should lead to improved diagnosis and 
treatment. Another area of application is the judicial 
system. A central question in many legal procedures 
is how to define and measure whether individuals are 
in full command of their decision-making faculties. 
Neuroeconomics has the potential to provide better 
answers to this question. Similarly, an improved under-
standing of why people experience failures of self-control 
should lead to better public-policy interventions in areas 
ranging from addiction and obesity to savings. The field 
also has the potential to improve our understanding of 
how marketing affects decisions and when it should be 

 Box 5 | From neuroeconomics to computational psychiatry

Sometimes the brain’s decision-making processes function so differently from societal norms that we label the ensuing 
behaviours and perceptions a psychiatric disease. The medical community recognizes and categorizes them according 
to well-accepted diagnostic criteria that, so far, have relied mostly on collections of behavioural features. Neuroscientists 
have accumulated a substantial amount of neurobiological data that impinges directly on these illnesses128. For example, 
there are now animal models for nicotine addiction, anxiety, depression and schizophrenia that have produced a 
veritable flood of data on neurotransmitter systems, receptors and gene expression129,130. Thus, there is a substantial body 
of biological data and detailed descriptions of the behavioural outcomes, but little is known about what connects them. 
This situation presents an opportunity for neuroeconomics and other computationally oriented sciences to connect the 
growing body of biological knowledge to the behavioural end points.

Computational models of reinforcement learning provide a new language for understanding mental illness and a 
starting point for connecting detailed neural substrates to behavioural outcomes. For example, reinforcement-learning 
models predict the existence of valuation malfunctions, in which a drug, a disease or a developmental event perturbs the 
brain’s capacity to assign appropriate value to behavioural acts or mental states34,131–133.

Disorders of decision making can also arise at the action-selection stage, especially when there are conflicts among the 
valuation systems. This presents the possibility of generating a new quantifiable taxonomy of mental-disease states. 
Interestingly, this set of issues is closely related to the problem of how to think about the ‘will’ and has applications to 
addiction, obsessive–compulsive disorder and obesity. These issues relate directly to the idea of executive control and 
the way that it is affected by mental disease. It is our opinion that future progress in this area will require more 
computational approaches, because only through such models can competing ideas of executive control be clearly 
differentiated. Such efforts are already well underway, and various modelling efforts have been applied to executive 
control and decision making in humans79,134,135.

Another neuroeconomics concept that is ripe for applications to psychiatry is motivation, which is a measure of how 
hard an animal works in order to retrieve a reward. Disorders of motivation might play an especially important part in 
mood disorders, such as depression, and in Parkinson’s disease78,136.
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