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How do we choose what to eat? How is this decision different from 
choosing a pair of shoes? Why is consistent dieting rare and difficult? 
These are basic questions in behavioral neuroscience, and important 
ones, as our ability to address the obesity epidemic depends on our 
ability to answer them.

Solving these questions requires bringing together two areas 
of study that have been separated for too long: the neuro- 
computational basis of decision-making1,2, and the homeostatic 
regulation of feeding3. Decision-making research has focused on 
characterizing the computational and neurobiological substrates of 
choice that are common to many domains, from feeding to financial 
decisions to social exchange. In contrast, research on homeostatic 
regulation has focused on characterizing systems that are specific to 
feeding, and has paid limited attention to how they interact with the 
rest of the decision-making circuitry.

Here we examine how advances in both fields have made possi-
ble the beginnings of a synthesis with the potential to generate new 
insights, questions and applications. We review extensive evidence 
showing that a common set of processes is at work across virtually 
all of the types of decisions that have been studied, including food 
choices1,2. At the same time, it is well known that metabolic and 
endocrine factors have powerful effects on feeding3–5. This strongly 
suggests that these factors exert their influence by modulating the 
operations of the decision-making circuitry.

Our Review takes a neuro-computational perspective, which requires 
characterizing the variables computed by different neural systems and 
how they affect different types of decisions. We integrate up-to-date 
knowledge from decision neuroscience with what is known about the 
homeostatic regulation of feeding. We use this knowledge to propose 
answers to the following questions: what is unique about feeding deci-
sions and why is making healthy food choices difficult to many people. 
Finally, we apply these concepts to the problem of obesity.

Framework
Figure 1 provides a description of the different types of computations 
that take place before, during and after making a feeding decision. 
The rest of the Review is organized around this framework. First, 
the organism needs to identify that it is in a decision situation and  
represent the options and actions available. This step can be trig-
gered by internal states (for example, feeling of hunger) or by external 
ones (for example, sight of food). The fact that most animals engage 
in feeding bouts suggests that they make food decisions at selected 
situations, rather than at every instant. Second, the organism needs 
to choose among the available options (for example, steak or salad?). 
As we will see, this often involves assigning value to the different 
options and comparing those values to select one of them. Third, 
once a choice is made and food is consumed, the organism evaluates 
the outcome. This involves tracking the outcomes and states induced 
by previous food choices (for example, taste or gastrointestinal dis-
comfort), and assigning outcome values to the experience. Fourth, 
the outcome information is used to learn how to make better deci-
sions in the future by updating the representation, choice and state 
tracking systems. In particular, the organism uses the outcome values 
to update the value assigned to foods in future decisions. Learning 
can also affect the representation stage by changing how attention 
is deployed to different options. Finally, food consumption changes 
internal states (for example, energy stores and hunger levels), which 
affect how future choices are made through their effects on a variety 
of homeostatic mechanisms.

Choice is guided by competing behavioral controllers
A sizable body of evidence has shown that decisions are controlled by 
three different systems6: a Pavlovian controller, a habitual controller and 
a goal-directed controller. This applies both to feeding and non-feeding 
decisions, but the distinction is especially central for dietary choice.

Pavlovian control. Organisms automatically deploy many types 
of pre-programmed responses when exposed to specific stimuli.  
A famous example is the salivation response of Pavlov’s dogs when 
exposed to food. These behaviors are hardwired because they 
are effective and computationally simple responses to specific 
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To advance our understanding of how the brain makes food decisions, it is essential to combine knowledge from two fields that 
have not yet been well integrated: the neuro-computational basis of decision-making and the homeostatic regulators of feeding. 
This Review integrates these two literatures from a neuro-computational perspective, with an emphasis in describing the variables 
computed by different neural systems and how they affect dietary choice. We highlight what is unique about feeding decisions, 
the mechanisms through which metabolic and endocrine factors affect the decision-making circuitry, why making healthy food 
choices is difficult for many people, and key processes at work in the obesity epidemic.
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 circumstances. With training, animals can also learn to deploy the 
Pavlovian behaviors in response to novel stimuli if they are predictive 
of the conditions that trigger the hardwired response. Thus, Pavlov’s 
dogs salivated not only to the sight of food, but also to the sound of 
a bell that predicted food.

The exact number of Pavlovian controllers is unknown and it is likely 
that different types of responses involve different neural subsystems6. For 
example, odorants trigger highly specific and stereotyped fear responses 
in rodents7, and each is expressed through different pathways, from 
amygdala and hypothalamus to periaqueductal gray8. In contrast, lesions 
to amygdala, orbitofrontal cortex (OFC) and ventral striatum (vStr) 
interfere with the expression of appetitive Pavlovian responses such as 
conditioned approach to cues associated with palatable foods9.

Two examples illustrate the role of Pavlovian control in feeding. 
Consummatory responses, such as pecking at physically proximate food, 
likely affect the initiation, rate and termination of eating. Preparatory 
behaviors, such as approaching cues that predict the delivery of food 
(for example, a restaurant sign), also influence when and what we eat.

Habitual control. More flexible behavioral responses can be gen-
erated using stimulus-action associations. More concretely, let  
rO(a | s) denote the reward generated by taking action a in state s. With 
repeated practice, and as long as the environment is stable, the habit 
system learns to assign a value to each state-action pair, denoted by 
V(a | s), which is proportional to the present discounted value of the 
rewards that follow10. The system then selects the actions with the 
highest value when exposed to cues associated with a given state.

Notably, the habit system is a model-free controller: it assigns values 
to action-state pairs by averaging the previous history of rewards with-
out forming a model of the outcomes generated by each action. Given 
that its values are determined by previously experienced rewards, it 
has difficulty learning the future consequences of actions (for exam-
ple, delayed health problems) that have not yet been experienced. This 
limits its ability to select optimal actions in environments in which 
actions have substantial long-term consequences or in settings with 
rapidly changing reward contingencies.

The dorsolateral striatum is critical for habitual control in both 
rodents11 and humans12,13. This area is connected in loops with motor 
cortex, which provides a mechanism through which cues can influ-
ence action selection6.

Two examples illustrate the role of habitual control in feeding. With 
sufficient training, rats tend to forage in cue-dependent locations 

associated with the receipt of previous 
rewards. Habits are likely to be in control 
in behaviors such as having a coffee at spe-
cific locations and following certain events  
(for example, lunch).

Goal-directed control. This controller allows 
for even more flexible behaviors by engag-
ing in model-based control6,14. Let p(o | a, s) 
denote the probability of obtaining outcome o 
when taking action a in state s. This control-
ler assigns a value to each action-state pair 
given by

U a s p o a s r o s
o

D( ) ( , ) ( )| | |= ∑

As shown in this expression, the model 
of the choice situation has two components: 
the action-outcome associations represented 

by the probability function and the outcome-reward associations  
represented in the reward function. The superscript denotes the fact 
that this is the reward function used to evaluate potential outcomes 
at the time of decision.

In contrast with the habit system, values are now computed using 
the model of the action-outcome-reward contingencies, which is a 
forward-looking process. In particular, information about outcomes 
can be used to update values without having to experience them first. 
Given this, values can reflect delayed consequences well before they 
are experienced (for example, by assigning a low value to future health 
problems).

Evidence for goal-directed control has been established in rats15 
and humans16–18. This requires showing that individuals prospectively 
modify their choices in response to changes to the action (that is,  
p(o | a, s)) or the reward contingencies (that is, rD(o | s)). Consistent 
with this, rats exhibit conditioned taste aversion, in which a previously 
favored action is no longer taken after the food reward associated with 
it is devaluated by pairing it with illness in a different context or by 
feeding to satiation15.

Several regions with distinct computational roles are thought to 
be involved in goal-directed control. The dorsomedial striatum is 
involved in the representation of action-outcome associations19. The 
hippocampus might have a similar function, although its role is not 
as well understood20. A large number of human functional magnetic 
resonance imaging (fMRI)21, monkey physiology22,23 and lesion  
studies24 have shown that areas of medial and central OFC, extending 
into ventromedial prefrontal cortex (vmPFC), compute the value of 
potential outcomes at the time of choice (that is, rD(o | s)). Notably, 
the same areas have been shown to assign value to a wide class of 
outcomes, from monetary payments to social rewards, and even appe-
titive and aversive foods25. Consistent with the properties of the goal-
directed system, activity in the vmPFC decreases after outcomes are 
experimentally devalued16,17. These value signals can be computed 
in a few hundred milliseconds, which implies that the controller is 
capable of rapid decision-making26. A network of areas that includes 
dorsolateral prefrontral cortex (dlPFC), pre-supplementary motor 
area and bilateral inferior parietal sulcus take the vmPFC values as 
inputs, compares them to select a course of action and modulates 
activity in motor cortex to implement it27,28. Finally, experiments 
with insula-lesioned rats suggest that it is involved in updating the 
value of food after changes in physiological states29, likely through 
its connectivity with vmPFC.

State tracking
Update internal states
Update external states

Identify decision situation
Cue and context recognition?

Set of feasible options and actions?

Action selection
What is the value of each action

(given the states)?
Choose action based on valuations

Learning
Update the representation,

valuation and action
selection processes

Outcome evaluation
Outcomes generated by

chosen option?
How desirable are they?

Figure 1 Summary of computations that take place before, during and after decision-making.
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In humans, all aspects of feeding can be 
controlled by the goal-directed system. In 
particular, we are able to control what, when and how we eat based 
on cognitive goals (for example, lose weight), albeit not always  
successfully. Also, new information can influence food choices in the 
absence of previous experience (for example, a friend’s recommenda-
tion). This controller must also be closely coupled with homeostatic 
regulators of feeding, as the values that it computes are sensitive to 
changes in the physiological states that they encode (for example, 
hunger and ghrelin levels).

Competition and interactions among controllers
A basic problem with having multiple controllers is that they might 
favor different actions30. For example, in the presence of a plate full of 
tasty food, the Pavlovian system might activate a consumatory eating 
response, whereas the goal-directed system might favor stopping.

Evolving control. The strength with which the Pavlovian and habitual 
controllers are activated in response to stimuli evolves over time, as 
the underlying associations have to be learned and updated. Habitual 
control is deployed only after repeated training in both rodents15 and 
humans13. It is also highly context dependent, so that actions selected 
in one context or state might not be chosen in another.

Computation of goal-directed values. To make good choices, the 
controller in charge needs to select the action that has the highest 
value to the individual, taking into account both short and long-term 
consequences. For the reasons described above, the Pavlovian and 
habitual systems may select actions inconsistent with this long-term 
view. For example, they might favor eating dessert, as it generates a 
strong and immediate hedonic response, while ignoring future health 
consequences, even if this entails a decision-making mistake.

Given the limitations of Pavlovian and habitual control, it is critical 
to understand how goal-directed values are computed and the extent 
to which they correctly weight long-term consequences. Figure 2 sum-
marizes our current understanding of how these values are computed: 
outcomes are mapped into a space of attributes, value is assigned to 
each of those attributes on the basis of their individual contribution to 
reward and the attribute values are summed to get an overall outcome 
value. This algorithm is able to compute the value of any potential 
outcome, even unfamiliar ones, as long as it can be mapped to a space 
of basic attributes to which it can assign value. Although Figure 2 lists 

some specific attributes as an example, we emphasize that the actual 
dimensions used by this system remain unknown.

Notably, there seem to be two distinct types of attributes: those 
associated with basic and immediate outcomes (for example, taste), 
and those associated with abstract and delayed ones (for example, 
health). A good decision requires computing value signals in vmPFC 
that weight both types of attributes properly, including discounting 
future outcomes at an appropriate rate. However, a human fMRI study 
comparing how healthy and unhealthy eaters compute values suggests 
that this is not always done31. In particular, the vmPFC value signals 
of healthy eaters reflected both the health and taste of foods, whereas 
in unhealthy eaters they only reflected taste. In addition, in healthy 
eaters, but not in unhealthy ones, the left dlPFC modulated activity 
in vmPFC in a way consistent with helping it take into account the 
values of health attributes. Follow-up work has shown that giving non-
dieters a reminder to pay attention to health information improves 
the healthiness of their food choices, and that the extent to which this 
happens is correlated with the degree to which the dlPFC-vmPFC 
network is activated32.

The mechanisms described here provide insight into why successful 
dieting is hard and rare. The Pavlovian and habit systems ignore long-
term consequences. They can be inhibited, but only when the goal-
directed system computes the correct overall value, detects a conflict 
and inhibits the competing responses. In addition, the goal-directed 
system assigns the correct value to food choices only when sufficient 
attention is paid to attributes such as health. Dietary self-control is 
hard because all of these processes have to be deployed correctly for it 
to occur and because we are constantly exposed to stimuli that trigger 
competing urges through the Pavlovian and habitual systems.

Outcome evaluation
After an action is taken, the brain keeps track of two types of infor-
mation: the outcomes generated by the different actions and their 
desirability. The first class of variables is used to learn the action-
outcome associations underlying goal-directed choice (that is,  
p(o | a, s)). The hippocampus is thought to be involved in tracking 
these associations20.

The second class is used to learn the model-free action values used 
by the habit system and the reward function rD(o | s) used by the 
goal-directed controller. To do this, an experienced reward function 

Sweetness
Value

sweetness

Water
content

Value water
content

Value ice cream

Value sweetness +
Value water +

Value calories +

...

...

+

Value health +
Value future $$ +

Value others +

=
Caloric
content

Value caloric
content

Value health

Value
future $$

Value others

Health
consequences

Future $$

Effect on
others

Figure 2 Description of how the goal-directed 
system can compute the value of a stimulus; 
for example, an ice-cream sundae. First, the 
item is mapped into the set of attributes that 
describe it. Second, a value is assigned to each 
attribute based on the current physiological 
state and the pleasure or pain associated with 
consumption of that attribute in the past. Third, 
the attribute values are integrated to compute an 
overall value for the item. There are two classes 
of attributes: basic attributes (such as sweetness 
or taste quality, depicted in blue) that are taken 
into account by all decision-makers and more 
‘abstract’ attributes (such as health, depicted 
in red) that are only taken into account by those 
who make healthy choices. We emphasize that 
the actual attributes used by the goal-directed 
system have not been identified, and the ones 
highlighted here were chosen solely for the 
purpose of providing an example.
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rO(o | s) is computed at the time of outcome. Note that these are 
two distinct computations: rD(o | s) is used at the time of decision to 
compute goal-directed values, whereas rO(o | s) is computed at the 
time of outcome to evaluate the outcome of previous decisions. This 
distinction parallels the well-known concepts of wanting and liking 
proposed by Berridge33.

To do this, the brain encodes a continuous stream of hedonic states, 
which provide a measure of experienced reward at any given instant34. 
These hedonic signals measure the short-term effect of actions, but 
do not reflect their delayed consequences. As a result, any learning 
heavily influenced by these hedonic signals, as is the case in habitual 
control, will not incorporate the value of future outcomes.

An influential series of studies have found a network of ‘hedonic 
spots’ in nucleus accumbens (NAcc), ventral pallidum35 and brain-
stem. Notably, a pleasurable state is registered only when all of the 
areas respond in concert36. In human fMRI studies, medial and cen-
tral OFC reliably correlate with subjective reports of hedonic expe-
rience37,38, including to taste rewards. Medial OFC receives inputs 
from all of the five senses, as well as at the insula, which can aid in 
the construction of these representations. OFC’s hedonic responses 
to basic stimuli such as liquids and odors depend not only on their 
chemistry and the physiological state of the individual, but also on 
cognitive beliefs about the experience, such as the price of a wine39. 
This suggests that OFC integrates multiple levels of information to 
compute hedonic value.

The hedonic effect of food is mediated by µ-opioid transmission 
in at least NAcc, ventral pallidum40 and basolateral amygdala41. 
However, it is not mediated by phasic dopamine responses, which 
instead are involved in value learning.

Learning
The brain utilizes the outcome tracking and hedonic signals to update 
how the three controllers operate.

Habit learning. The habitual system updates its action values through 
the computation of a reward prediction error (RPE) signal at the time 
of outcome given by

d t t
O

tr o s V a s= −( ) ( )| |

where the subscripts denote time, a is the action taken, s is the active 
state and o is the current outcome generated by the action10. The RPE 
can then be used to update the action values by

V a s V a st t t+ ( ) = ( ) +1 | | ld

where λ is a learning rate controlling the speed of learning.
The phasic responses of midbrain dopamine neurons have been 

shown to encode the computation of RPE signals in a wide class of 
paradigms42–44, involving rewards as distinct as food45,46, money 
and social outcomes47. According to the model, stronger hedonic 
responses at outcome should lead to stronger dopaminergic responses, 
thereby increasing the likelihood that the action just taken will be 
repeated in the future. Consistent with this, blood oxygen level–
dependent (BOLD) responses in dorsal striatum after ingestion of 
palatable food are proportional to subjects’ hedonic reports48. On the 
basis of rodent lesion49 and human fMRI studies13,17, habit learning 
is thought to depend on the release of dopamine RPE signals into 
dorsal striatum.

We emphasize again that the hedonic and phasic dopaminergic 
responses involve different computations and systems. Consistent 

with this, hyper-dopaminergic mice consume more sweet rewards, 
but do not seem to experience more pleasure from them50. In addi-
tion, dopaminergic responses to food rewards can arise independently 
of taste signaling, which suggests that post-ingestive mechanisms 
(for example, measures of caloric intake) can trigger RPE activity  
directly51. Notably, a sizable body of evidence suggests that, in con-
trast with the phasic responses, tonic dopamine levels influence  
activities that entail energy expenditure, such as exploration of the 
choice environment52.

Pavlovian learning. One important class of Pavlovian responses are 
those triggered by general appetitive (for example, approach) and 
aversive (for example, withdrawal) stimuli. The central nucleus of 
the amygdala and vStr have been shown to be involved in this type of 
learning. Anatomically, the amygdala projects directly to the lateral 
hypothalamus and brainstem nuclei associated with initiating con-
ditioned autonomic reflexes53, and vStr sends indirect projections to 
motor nuclei in brainstem that have an analogous role9,54. In addi-
tion, dopamine projections to these areas are necessary for Pavlovian 
learning to occur55.

Goal-directed learning. The goal-directed system needs to learn  
p(o | a, s) and rD(o | s). It is well-known that the hippocampus and sur-
rounding medial temporal lobe are important for learning stimulus-
stimulus associations, for generalizing knowledge among them and 
for establishing ‘episodic’ memories even after single episodes20. The 
hippocampus is involved in learning p(o | a, s), but not at test time20. 
Notably, dopamine neurons project to hippocampus and modulate 
its plasticity56, which could help to prioritize which associations are 
learned on the basis of their reward implications.

Much less is known about how rD(o | s) is learned. Although it is 
natural to speculate that dopamine is also involved here, the evidence 
suggests that, at most, it provides a partial account6. For example, 
transgenic mice without dopamine are able to successfully learn the 
location of food rewards57. There are also aspects of the reward func-
tion that are hard to explain solely on the basis of the RPE account of 
dopamine. For example, it is easier to establish aversive conditioning 
between flavors and toxins that induce illness than between flavors 
and electric shocks58, which implies that rO(o | s) cannot be the sole 
driver of this type of learning.

Homeostatic regulation of feeding
A unique aspect of feeding decisions is the existence of dedicated 
homeostatic systems that regulate energy intake and stores. These 
systems include hormonal regulators of hunger, satiety and fat levels, 
such as leptin, ghrelin and insulin, among others3–5. A basic ques-
tion is whether the homeostatic systems provide a parallel system 
for controlling feeding decisions or whether they operate by modu-
lating the decision-making circuitry described above. The former 
view is common in the literature, which often has made a distinction 
between ‘homeostatic feeding’ and ‘hedonic feeding’. As others have  
previously4,5,59,60, here we argue for the latter view.

Given the richness of the homeostatic regulators and the detailed 
pathways that have been identified4,5,59,60, we do not attempt to be 
comprehensive in our discussion of how these mechanisms inter-
act with the decision-making circuitry. Instead, we showcase three 
pathways that have been the subject of extensive investigation: leptin, 
ghrelin and the lateral hypothalamus.

Leptin is a circulating hormone secreted by adipocytes that signals 
the size of peripheral energy stores. It provides a negative homeo-
static feedback loop to decrease feeding as energy stores increase. 
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Consistent with this, meal size is reduced by exogenous administra-
tion of leptin61, and leptin-deficient mice become obese62. Leptin 
receptors have been found in many areas, including the hypothala-
mus63, ventral tegmental area (VTA)64 and hippocampus65. Rodent 
studies have found that leptin administration decreases the fir-
ing of VTA dopamine neurons after food consumption64. Human 
fMRI studies have found that leptin replacement down-modulates 
responses in the vStr when subjects are exposed to appetitive foods66. 
Notably, although leptin receptors are found in the taste buds67, leptin 
can modulate dopamine responses even when food is administered 
intragrastrically, which suggests that leptin’s effects on dopamine do 
not operate solely by decreasing the reward experienced from food 
consumption68. Leptin reduces food intake by enhancing response 
to satiety signals, similar to the release of cholecystokinin by the 
gut in response to gastric distension69. The hippocampus is densely 
populated with leptin and insulin receptors70, and administration of 
leptin into this region enhances long-term potentiation71. Together, 
these findings suggest that leptin can reduce feeding by modulating 
at least three different channels. First, it reduces phasic responses by 
dopamine neurons associated with the computation of RPEs, which 
decrease future feeding by lowering the habit values of food con-
sumption. Second, it reduces the hedonic response to palatable food, 
which reduces the value assigned to these foods by the habit and goal-
directed systems. Third, it enhances the learning of action-outcome 
associations by the goal-directed system, and, through this, its ability 
to control decisions.

Ghrelin is a peptide hormone secreted by the gut. It is thought 
to influence food initiation and termination, as its concentration 
increases in parallel with hunger before meals and falls with satia-
tion afterwards72. Exogenous administration of ghrelin increases 
food intake in animals73 and humans74. Ghrelin receptors are found 
in the hypothalamus73, VTA75, NAcc, amygdala76 and hippocampus77. 
However, it does not seem to increase the hedonic responses to food (as 
measured by licking responses at the time of consumption)78. Instead, 
local ghrelin injections to rodent VTA increase dopamine release into 
the striatum, as well as subsequent feeding75. Ghrelin administra-
tion also increases BOLD responses to food pictures in areas such 
as OFC, striatum and amygdala, which control the computation of 
value in goal-directed choice and influence the responses of appetitive 
Pavlovian controllers79. Ghrelin also modulates hippocampal activ-
ity and memory performance80. Together, these findings suggest that 
ghrelin modulates feeding through (at least) the following channels. 
First, it increases the goal-directed values assigned to food at meal 
initiation and decreases them after satiation. Second, it modulates the 
computation of RPEs by the dopamine system. Third, it modulates the 
activation of Pavlovian appetitive responses, such as approaching food 
cues. Notably, ghrelin responses to food consumption are modulated 
not only by the food’s nutritional content, but also by cognitive beliefs 
about how much was consumed81, which suggests that these metabolic 
signals might be more complex than commonly thought.

Neurons expressing orexin and melanin hormones in the lateral 
hypothalamus act as the metabolic detectors and are critical for 
the regulation of feeding. Projections from lateral hypothalamus to 
caudolateral OFC (the secondary taste area) seem to carry satiety 
information that can be used in the computation of hedonic and 
goal-directed values82. This region also seems to be important for 
the control of feeding Pavlovian responses. For example, electrical 
stimulation of lateral hypothalamus induces intense eating83, and this 
effect can be blocked through leptin administration or feeding to 
satiation. These neurons are also involved in goal-directed control 
through their projections to OFC, insula and amygdala5.

Uniqueness of dietary choice
Although the core decision-making circuitry is used to make both 
feeding and non-feeding decisions, several properties of feeding make 
it a unique choice problem. First, feeding can be regulated by any 
of the three controllers, and Pavlovian and habitual controllers are 
likely to be important for feeding. In contrast, decisions such as which 
shoes to buy are mostly under goal-directed control. Second, feeding 
decisions have to be made with high frequency. This is important 
because it gives rise to the possibility of frequent and rapid learning, 
which can help explain why animals exposed to highly palatable diets 
become rapidly habitized. Third, feeding is modulated by dedicated 
homeostatic mechanisms. In contrast, analogous homeostatic mecha-
nisms have not been identified for any other behaviors, except those 
that involve basic physiological drives such as breathing or hydration. 
Fourth, there are feeding-specific Pavlovian mechanisms, which likely 
control consummatory behaviors such as approaching food in hunger 
states. In contrast, dedicated Pavlovian controllers have not been iden-
tified for other consumption decisions. Fifth, feeding-related learning 
is constrained in the type of associations that can be learned. This is 
exemplified by the relative ease with which organisms learn associa-
tions between flavors and illness, even after a single exposure58. In 
contrast, associations between flavors and other types of outcomes are 
harder to learn. Sixth, consumption of sweet and fatty foods activates 
the hedonic circuitry with unusual power. This is important because 
it can lead to a rapid transfer of control to the Pavlovian and habit 
systems. Consistent with this, rats exhibit a strong preference for a 
calorie-free saccharine solution over intravenous self-administration 
of cocaine84, and blocking opioid receptors with naloxone reduces 
hyperphagia of highly palatable foods, but has no effect on the con-
sumption of regular food85. Also, conditioned preferences for flavors 
associated with fat content administered intragastrically are hard to 
extinguish and long-lived86.

Other behavioral decisions share some of these properties, but only 
feeding combines all of them (Table 1). This is important because it 
is the interaction of these features that makes dietary choice difficult 
and unique. Understanding this uniqueness is essential to understand 
why there is an obesity epidemic, but not an increase in decision 
mistakes in other domains.

Table 1 Properties of different decision problems

Feeding Breathing Sex
Consumption goods  

(for example, clothing) Drugs of abuse Kin altruism

Necessary and frequent consumption 3 3 × × × ×
Regulated by multiple controllers 3 Possible, but limited 3 3 3 3

Dedicated homeostatic mechanisms 3 3 ? × × ×
Dedicated Pavlovian controllers 3 3 ? × × ?
Dedicated learning systems 3 ? ? × × ?
Powerful activation of hedonic 

circuitry at consumption
3 × 3 × 3 ×
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Obesity
Obesity results from a sustained excess in calories consumed minus 
calories used. Thus, it is affected by feeding decisions, energy con-
sumption and metabolic factors that regulate how excess calories 
are stored and used. Here we focus on the role of feeding decisions, 
which some view as the critical and most challenging component of  
the equation.

It is important to highlight that, from a neuroeconomic perspective, 
obesity is almost always associated with mistakes in decision-making. 
A mistake occurs when an individual’s choice does not maximize the 
net present value of rewards associated with the decision, appropri-
ately discounted. The fact that obesity is accompanied by frequent 
and (often) unsuccessful attempts to lose weight demonstrates that 
individuals know that healthier eating is the optimal option, but 
that they are unable to systematically make the choices necessary to 
accomplish this goal.

Potential mechanisms. In principle, excess food consumption can 
result from faulty processing in any of the decision processes described 
above. For example, an individual who experiences unusually large 
hedonic responses (rO(o | s)) or reward prediction errors (δt) after 
consuming fats or sugars is likely to increase their consumption sub-
stantially, through all of the controllers, which would result in obes-
ity. Some traits seem to be associated with an increased incidence of 
obesity, although cause and effect are often difficult to sort out in 
these studies. For example, there is a positive correlation between 
body mass index and the discounting of future monetary rewards87, 
and individuals with stronger sensitivity for rewards (of any kind) 
exhibit stronger BOLD responses in OFC and NAcc when exposed to  
food images88.

Likely mechanisms. Although a wide range of mechanisms can be 
responsible for individual cases of obesity, two key facts suggest that 
the current obesity epidemic is likely attributable to a sub-set of the 
potential mechanisms. First, healthy rats and humans only develop 
hyperphagia when repeatedly exposed to cafeteria style diets89, which 
suggests that environmental variables are critical. Second, obesity 
rates have increased over a short time span, which makes it highly 
unlikely that a purely biological cause is at work.

Given these critical facts, and the find-
ings reviewed above, we hypothesize that 
increases in obesity result from a change in 
environmental factors and its interactions 
with the properties of the feeding circuitry. 
First, there has been a substantial increase 
in food cues and availability of unhealthy 
foods. For example, portion sizes have 
increased substantially90 and food prices 
have decreased91. Second, this has resulted in 
increased activation of Pavlovian and habitual  
controllers, with all of the short-comings 
that this entails. Third, this has increased the 
demands placed on the goal-directed control-
ler, making it more likely to fail. This problem 
might be further exacerbated by lifestyle and 
work-place changes that have led to increased 
cognitive demands and stress in many indi-
viduals. Consistent with this, experiments 
have shown that cue-triggered Pavlovian and 
habitual control is more likely to take over 

under cognitive load92, and an fMRI study of dieters32 showed that 
attention is important to compute correct goal-directed values.

Vicious circles. These mechanisms give rise to three vicious circles 
that further worsen the problem (Fig. 3). First, increased consump-
tion of unhealthy foods impairs the ability of metabolic and endocrine 
factors to restore homeostatic balance. This impairment can operate 
through different channels. For example, elevated dietary fat (directly 
or indirectly) confers insensitivity to peptides that regulate body weight 
through their effect on the hypothalamus93,94. Second, high-fat diets 
have been associated with the development of cognitive impairments 
that can interfere with the performance of the goal-directed system, 
further increasing the extent to which feeding is governed by habitual 
and Pavlovian control95. Consistent with this, hippocampal damage 
produces hyperphagia in humans96,97 and rats98, and obese individu-
als have stronger BOLD responses to food cues in NAcc99. Third, as 
Pavlovian and habitual control take over, behavior becomes more 
responsive to the cues associated with these systems (for example, big 
portions) and less responsive to cognitive factors (for example, prices, 
information or health goals). This introduces economic incentives 
for food suppliers to further increase the supply of cues (for example, 
 marketing) and unhealthy foods (for example, fat, salt and sugar con-
tent). This highlights the importance of policies that target the source of 
the problem directly, through regulation of the food environment100.

Final remarks
Substantial progress has been made toward understanding the neu-
rocomputational basis of decision-making, as well as the nature of 
the various systems that serve as homeostatic regulators of feeding.  
The next challenge is to bring the two fields together. Here we have 
tried to showcase that this integrative agenda is feasible, has the poten-
tial to generate new insights and questions, and could substantially 
advance our understanding of diseases such as obesity and anorexia. 
Needless to say, the work required to integrate these two fields has 
just begun.
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