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Perceptual decisions requiring the comparison of spatially distributed stimuli that are

fixated sequentially might be influenced by fluctuations in visual attention. We used two

psychophysical tasks with human subjects to investigate the extent to which visual

attention influences simple perceptual choices, and to test the extent to which the

attentional Drift Diffusion Model (aDDM) provides a good computational description

of how attention affects the underlying decision processes. We find evidence for

sizable attentional choice biases and that the aDDM provides a reasonable quantitative

description of the relationship between fluctuations in visual attention, choices and

reaction times. We also find that exogenous manipulations of attention induce choice

biases consistent with the predictions of the model.
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INTRODUCTION

Over the last two decades, neuroscientists and psychologists have devoted considerable effort to
understanding the neurocomputational basis of decision-making. The goal has been to understand
which are the variables encoded at the time of decision, what are the algorithms used to combine
them into a decision, and how are these processes implemented and constrained by the underlying
neurobiology. Considerable progress has been made in understanding simple perceptual decisions
(e.g., determine the net direction of motion in a field of noisy moving dots) and simple value-based
choices (e.g., choose between two food snacks). Interestingly, a qualitatively similar class of
algorithms has been shown to provide a good description for the accuracy and reaction time
patterns in both perceptual (Ratcliff and Rouder, 1998; Gold and Shadlen, 2001, 2007; Smith and
Ratcliff, 2004; Ditterich, 2006; Brunton et al., 2013) and value-based choices (Mormann et al.,
2010; Tsetsos et al., 2011; Hunt et al., 2012; Philiastides and Ratcliff, 2013; Hutcherson et al.,
2015), although many important details remain to be worked out (Bogacz, 2007; Summerfield
and Tsetsos, 2012; Tsetsos et al., 2012b; Brunton et al., 2013; Orquin and Loose, 2013; Shadlen
and Kiani, 2013; Teodorescu and Usher, 2013). Despite important differences among the various
models that have been proposed, all of the algorithms are built around the idea that decisions are
made by accumulating noisy evidence in favor of the different alternatives, and that choices are
made when the weight of accumulated evidence in favor of one of the options becomes sufficiently
strong. For this reason, they are often described as sequential integration models. There is also a
growing understanding of how the brain implements these processes in both perceptual (Shadlen
and Newsome, 2001; Roitman and Shadlen, 2002; Heekeren et al., 2004; Philiastides et al., 2006;
Churchland et al., 2008; Kiani et al., 2008; Tosoni et al., 2008; Ho et al., 2009; Bennur and Gold,
2011; O’Connell et al., 2012) and value-based choice (Basten et al., 2010; Philiastides et al., 2010;
Hare et al., 2011b; Hunt et al., 2012; Polanía et al., 2014; Rustichini and Padoa-Schioppa, 2015).
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Since many decision tasks require the comparison of
spatially distributed stimuli, two important questions are whether
decisions are affected by how visual attention is deployed during
the process of choice, and if so, how do sequential integrator
models need to be modified to incorporate the role of attention.
For example, in the context of perceptual choice, if a subject
is shown two lines of different length on the left and right of
the screen and has to decide which one is longer, how does the
pattern of fixations to the two stimuli affect his decision, if at all?
Or in the context of value-based choice, if a subject is shown two
food stimuli, how does his pattern of fixations affect which of the
two he chooses to eat?

This problem has been studied in the realm of value-
based choice. Krajbich et al. (Krajbich et al., 2010, 2012;
Krajbich and Rangel, 2011; Towal et al., 2013) found that a
modification of the popular Drift Diffusion Model, which they
call the attentional Drift Diffusion Model (aDDM), provides a
quantitatively accurate description of the relationship between
visual attention, choices and reaction times in several value-based
tasks. The aDDM builds on previous work by Busemeyer and
collaborators, who proposed an alternative class of sequential
integrator models in which attention plays a role (Roe et al.,
2001). In the aDDM, attention influences choices by increasing
the relative weight given to evidence related to the attended
stimulus. As a result, the model predicts that exogenous shifts of
attention can cause systematic choice biases, which is consistent
with the results of several studies (Shimojo et al., 2003; Armel
et al., 2008; Hare et al., 2011a; Pärnamets et al., 2015; Kunar et al.,
2017).

Given that a remarkably similar set of algorithms have been
shown to be at work in perceptual and value-based choice tasks
in which attention plays no role, it is natural to hypothesize
that the aDDM might also provide a reasonable computational
description of the role of visual attention in simple perceptual
decisions, and that exogenous shifts in attention (i.e., unrelated
to the perceptual properties of the stimuli) might causally bias
choices as predicted by the aDDM. Here we present the results of
two experiments designed to test these hypotheses.

Testing the extent to which the aDDM is able to provide
a satisfactory quantitative description of the role of visual
attention in simple perceptual choices is interesting for several
reasons. First, previous experiments have shown that attention
can affect perceptual choices using divided attention paradigms
(Wyart et al., 2015), spatial pre-cuing paradigms (Posner
et al., 1980; Smith et al., 2004; Carrasco, 2011), and serial
dependence paradigms (Fischer and Whitney, 2014). However,
the algorithmic or computational description of this effect
remains an open question (Summerfield et al., 2013). Second, an
important open question in cognitive neuroscience is whether the
same algorithms are at work in different domains and systems
whenever the problem they are trying to solve is sufficiently
similar. This view is consistent with the fact that sequential
integrator models are able to accurately describe two-alternative
forced choices in domains ranging from memory, to perception,
to economic choice (Gold and Shadlen, 2007; Ratcliff and
Mckoon, 2008; Starns et al., 2012; Shadlen and Kiani, 2013).
However, since perception and value-based choice are made on

the basis of different evidence (i.e., perceptual inputs vs. reward
predictions), attention might operate through very different
channels in these two cases, and thus we cannot assume ex-ante
that it might have a computationally similar effect in both types
of decisions.

MATERIALS AND METHODS

Subjects
In Experiment 1 we tested 25 subjects (10 female, mean age 23),
which included Caltech students and staff as well as members of
the surrounding community. Subjects were advised to use glasses
for eyesight correction as needed. Each subject completed 1,344
decision trials, split into 4 identical experimental sessions, spread
across 4 different days. Subjects received a $15 show-up fee in
each day, a $40 bonus for completing all sessions, as well as
additional earnings based on performance, as described below. In
Experiment 2 we tested 20 subjects (9 female, mean age 25). Each
subject completed 336 trials in a single session, and received a $15
show-up fee, as well as additional earnings based on performance.
The experiments were approved by Caltech’s IRB and all subjects
provided informed consent prior to participation.

Experiment 1
Experiment 1 consisted of four identical sessions, collected on
four separate days, within a period of 2 weeks. Each experimental
session was divided into 12 blocks of 28 decision trials. At the
beginning of each block, subjects were shown for 5 s a line
depicting a target orientation chosen from the set {20◦, 35◦,
55◦, 70◦}, as shown in Figure 1A. This excludes vertical and
horizontal orientations, which would have made subsequent
choices too easy. Each orientation was chosen as the target three
times per session, in random order.

In each decision trial subjects were shown two oriented lines,
on the left and right sides, with an eccentricity of 16 degrees from
the center of the screen (Figure 1B). The relative orientation
between each of the two lines and the target, denoted by 1,
was chosen from the set {−15◦, −10◦, −5◦, 0◦, 5◦, 10◦, 15◦}
(Figure 1C). The subjects’ task was to decide which of the two
lines had an orientation closest to the target. They were allowed
to take as long as needed to make a choice, and indicated their
choice with a button press (“A” for left and “L” for right). Let
1left and 1right denote the relative angular distance between the
target and the left and right items, respectively. The two choice
stimuli shown in the trial were not allowed to have the same 1.
Uniform sampling subject to these constraints led to 42 different
trial conditions. Each was used eight times per session, in random
order. Subjects saw a blue box around the chosen item in each
trial, but they did not receive feedback about the correctness of
their decisions during the task.

Stimuli were presented on a 1,280 × 1,024 screen, placed
∼50 cm from the subjects’ eyes. Subjects were required to keep
their hands on the response buttons for the entire task, so they
could enter responses without looking at the keyboard. Subjects’
fixation patterns were recorded at 500 Hz using an EyeLink
1000 Plus desktop-mounted eye-tracker with head support.
Fixations and saccades were determined using the eye-tracker’s
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accompanying software package. The eye-tracking system was
calibrated at the beginning of each session, and again whenever
the eye-tracker lost the subject’s eye (which only occurred 4 times
during all sessions of both experiments). Before each decision
trial, subjects were required to maintain a continuous fixation on
a central cross for 500 ms before the items would appear, which
ensured that every trial began with a fixation on the same central
location.

In order to familiarize subjects with the targets, they
also completed a training task at the beginning of each
block (Figure 1D). Here, subjects were shown a single
oriented line in the center of the screen, and had to decide
whether or not the line shown had the same orientation
as the target. They were allowed to take as long as needed
to make the decision, which they then indicated with a
button press (“A” for no and “L” for yes). Subjects received
immediate feedback for 1 s after every decision indicating its
correctness. The training task ended after six correct decisions in
a row.

The target stimulus for each block was shown once at
the beginning of the block (before the training trials), once
immediately after the training trials, and again after every 5
decision trials. At the end of each experiment session, we selected
25 decision trials at random, and subjects received an additional
payment of $1 for each correct response.

Experiment 2
The structure of a typical trial in Experiment 2 is depicted in
Figure 2. Experiment 2 was similar to Experiment 1, except for
the following differences. First, each subject completed a single
session with 12 blocks of 28 trials each. Second, in each trial
we randomly selected one of the two items on the screen to be
the bias-target item. We used the following procedure to bias
fixations toward that item. Unbeknownst to the subjects, we
required a minimum amount of cumulative fixation time to each
item: 800ms for the bias-target item and 200ms for the other one.
In every trial we kept track of the cumulative fixation durations to
each stimulus and, as soon as the minimum requirement for both
was met, the items disappeared and the subject was prompted to
make a choice. Third, subjects were told (without deception) that
both the duration of decision trials and the item that appeared
first would be chosen at random every trial, but were not told
that the procedure was designed to bias fixations. To minimize
awareness of the nature of the experimental manipulation, which
relies on giving subjects control over the duration of trials
through their fixations, we set the maximum duration for each
evaluation period to 3 s. If the minimum fixation requirements
for both items were not met within that period of time, the
subject was prompted to make a decision. Trials in which the 3-
s boundary was binding were removed from additional analyses
since they exhibited unusual fixation patterns (24.3% over the

Initial fixation (enforced):
0.5 second

Free RT Selection box:
1 second

ITI:
1 second

Initial fixation (enforced):
0.5 second

Free RT Accuracy feedback:
1 second

ITI:
1 second

A B
Block target:

5 seconds

DC
Target at 35o

5o

FIGURE 1 | Summary of Experiment 1. (A) In the beginning of each block of trials a new target orientation was shown for 5 s. The target was shown again

immediately after the training trials, and again after every 5 decision trials. (B) Trial structure for our simple perceptual decision task. In each trial subjects must choose

the stimulus (left or right) with the orientation closest to the target. (C) Diagram showing all seven possible item orientations, in increments of 5◦, given a target

oriented at 35◦. (D) Trial structure for training trials.

FIGURE 2 | Summary of Experiment 2.
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entire group; across subjects, min = 6.8% and max = 55.6%).
This trial exclusion rule was chosen a priori to minimize the
chance that subjects would become aware of the experimental
manipulation. Furthermore, the exclusion of these trials did not
qualitatively affect any of the reported results. Fourth, subjects
were only allowed to enter their decisions after the decision
prompt appeared, and could take as much time as needed to
do so. Fifth, we refer to trials in which the bias-target item was
fixated longer (and in which the stopping condition was reached
before 3 s) as effectivemanipulation trials. Note that not all trials
were effective since the contingencies described above allow for
the possibility that subjects fixate more on the non-bias-target
item. In order to increase the fraction of effective trials, which
is the manipulation of interest, the bias-target item was always
displayed on the screen first, and the other item was only added
after a certain delay, which counted toward the total fixation
time for the bias-target. The duration of this lag was between
100 and 500 ms, and was calibrated separately for each subject
at the beginning of the experiment using the following staircase
procedure. The lag started at a value of 300 ms, and was adjusted
with a step of 30 ms. After every 3 consecutive effective trials (i.e.,
trials in which the bias-target item was fixated longer) the lag was
decreased by 30 ms, and after a single ineffective trial (i.e., one
where the bias-target item was not fixated longer), the lag was
increased by the same amount. A total of 48 trials were used in
the staircase procedure, and the value of the delay at the 48th trial
was then used throughout the remainder of the task (duration:
mean= 450 ms, SD= 35 ms). Sixth, at the end of the experiment
we randomly selected 20 decision trials, and subjects received an
additional payment of $1 for each correct response in this set.
Seventh, at the end of the task, subjects completed a questionnaire
in which we asked if they found anything strange about the
timing of the items being displayed and the decision prompt.
None of the subjects reported finding a connection between their
fixations and the duration of the trials.

Fixations
All recorded fixations were classified as either item fixations (to
either the left or right stimuli on the screen) or “blank” fixations.
Trials in which “blank” fixations accounted for more than 50%
of the response time were discarded from further analysis (mean
percentage discarded trials across all subjects: 5.2%,min= 0.15%,
max = 25.8%). Furthermore, if a “blank” fixation was recorded
between two fixations to the same stimulus, the observation was
converted into a fixation on that item. This is justified by the fact
that this type of “blank” fixations tend to be very short, and are
likely to be the result of blinking or eye-tracker noise (duration:
mean = 41 ms, SD = 133 ms). If a “blank” fixation was recorded
between fixations on different items, then it was grouped into
that trial’s inter-fixation transition time and used as such in the
analyses below.

Group Model Fitting
We used maximum likelihood estimation (MLE) to fit the aDDM
to the pooled group data. The model has three free parameters
(d, θ , and σ ) which we fitted using only the odd-numbered trials,

so that the even-numbered trials could be used to test its out-of-
sample predictions (see the Results section for a description of
the aDDM).

The MLE procedure was carried out in multiple steps. In
step 1 we defined a coarse grid of parameter combinations,
denoted by �1, which was given by the cross product of the
sets {0.001, 0.005, 0.01} for d, {0.1, 0.5, 0.9} for θ , and {0.01,
0.05, 0.1} for σ . Although this set only has nine points, it was
selected because it spans a wide range of potential parameter
combinations. We computed the likelihood of the choice and
RTs observed in the odd-numbered trials, conditional on the
observed pattern of fixations in each trial, for each vector of
parameters in �1. This was done by simulating the aDMM
using the algorithm described in the Supplementary Materials.
All time data (including RTs, latencies, fixation durations and
inter-fixation transition times) were binned into 10 ms steps. We
then selected the vector of parameters in �1 with the highest log-
likelihood as the first candidate solution, which for our data was
given by d = 0.005, θ = 0.1 and σ = 0.05. Let (d1, θ1, σ1)
and ML1 denote, respectively, the best set of parameters and
the likelihood that it explains the data that arises from the first
step.

The algorithm then proceeded inductively until a stopping
criterion was reached. Let �t denote the search set used in step
t, and (dt , θt , σt) and MLt denote the best candidate solution at
this step. Step t + 1 then proceeded as follows. A new grid of
9 potential vector parameters, denoted by �t+1, was constructed

as the cross product of the sets { dt−
1dt
2 , dt , dt+

1dt
2 }, { θt−

1θt
2 ,

θt , θt +
1θt
2 }, and { σ t −

1σ t
2 , σ t , σ t +

1σ t
2 }, where 1dt , 1θt

and 1σ t correspond to the parameter step sizes used in �t . Note
that �t+1 included (dt , θt , σt), as well as a finer grid around it.

The MLE step was then repeated again. The algorithm
continued until the improvement in the MLE of the proposed
parameter solution was <1%. For our data, the convergence
process was accomplished in 7 steps, and resulted in an estimate
of d = 0.0041, σ = 0.063, and θ = 0.36.

Out-of-Sample Group Simulations
In order to test the ability of the model to predict out of
sample, we used the aDDM with the best fitting parameters for
the odd-numbered trials to predict data group patterns in the
even-numbered trials.

Critically, the predictions were made conditional on the
relative orientation of the stimuli, but not on the actual fixation
patterns observed in the even trials. To understand why, note that
due to the randomness in the aDDM algorithm, two trials with
identical stimuli and fixations might lead to different choices and
RTs. As a result, two runs of the same trial can result in different
outcomes even if they initially exhibit identical fixations. In
addition, if the aDDM is an approximately accurate description
of the underlying processes, the pattern of fixations can vary
widely over repeated decisions with an identical pair of stimuli,
a fact that is observed in the data. For these reasons, our out-of-
sample predictions condition on the relative orientation of the
stimuli, including the effect that this has on the fixation process,
as described below, but not on the actual realized fixations. This
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allows us to test the ability of the aDDM to account out-of-sample
for key patterns in the data conditional only on independent
variables like the relative orientation of the stimuli.

For each of the 42 trial conditions we simulated 400 trials
of the model, while sampling fixations, latencies and inter-
fixation transitions from the empirical distributions, pooling the
even-numbered trials from all subjects. Initial latency (i.e., the
delay between stimulus appearance and the first item fixation)
and subsequent inter-fixation transitions were sampled, each
from its own distribution, without any further conditioning. To
maximize the extent to which the simulated fixations matched
the observed fixations, item fixations were sampled as follows.
First, they were partitioned into 3 groups, corresponding to first,
second and other middle fixations. Additionally, item fixations
were conditioned on the relative proximity difference between
the fixated and the unfixated items, rfixated − runfixated, since
this matched the observed fixation patterns well. Note that the
pool of fixations used to simulate the model excluded final
fixations. According to the aDDM, a maximal fixation duration
is drawn at the fixation outset and runs its course unless a
barrier is cross beforehand. As a result, observed final fixations
are truncated, and using them would bias the simulations (under
the maintained hypothesis that the aDDM is correct).

Each trial was simulated by sampling latencies, fixations, and
inter-fixation transitions as needed to carry out the simulation
to its completion. In particular, each simulation began with a
sampled latency, during which only white Gaussian noise was
added to the RDV. Following this, fixations alternated between
the left and right items such that, if the first fixated item was left,
the second one would be right, and so on. The first fixation was
chosen to be left with probability 0.65, which equals its empirical
frequency. The maximum first fixation duration was sampled
from the pool of first fixations, conditioned on rfixated − runfixated.

The simulation for a trial was terminated if the aDDM crossed
a decision barrier during the course of a fixation. After each
item fixation, an inter-fixation transition duration was sampled,
and if a simulation happened to terminate on a transition,
it was discarded, since this was not commonly observed in
the data (mean percentage of trials across all subjects: 14.4%,
min = 8.2%, max = 25.9%). We also simulated the model
without discarding simulations that ended on transitions, but did
not find any significant differences from the results presented
here.

Model Comparisons
In order to explore the role of attention in explaining the data,
we carried out an additional set of analyses designed to test the
best fitting aDDM with the best fitting standard DDM, which
equals the special case of θ = 1 where attention does not
matter. To do this, we first re-estimated the model in the odd-
number trials under the restriction that θ = 1 to find the
best fitting standard DDM. We then carried out three different
out-of-sample prediction exercises.

First, we predicted choices and RTs in the even trials using
the best fitting DDM. This was done by simulating the model
100,000 times for each potential combination of rleft and rright ,
and then making predictions by sampling choices and RTs from

the resulting simulations conditional on the stimulus orientations
on each trial.

Second, we predicted choices and RTs in the even trials using
the best fitting aDDM, conditional on net fixation time (i.e.,
total fixation time on left minus total fixation time on right).
This was also done by simulating the model 100,000 times for
each potential combination of rleft and rright , and then sampling
choices and RTs from the resulting simulations, but this time
conditional on both the stimulus orientations and the overall net
fixation time observed in the even trial.

Third, we predicted choices and RTs in the even trials using
the best fitting aDDM, and conditional on the observed fixations.
To do this, we simulated the aDDM for each even trial assuming
the same values of rleft and rright , and that the fixation process was
identical to the one seen in the trial up to its RT. If the simulation
did not lead to a choice by the observed RT, additional fixations
were sampled using the fixation process described above. The
outcomes of the simulation were used as the choice and RT
predicted for each even trial.

Goodness-of-Fit Measures
For binary variables, we report Efron’s pseudo R-squared as a
measure of goodness-of-fit, which corresponds to the squared
correlation between the predicted values and the actual values.
For non-binary variables, we report a number of goodness-of-
fit measures, which are designed to test the similarity between
the predicted and the observed data patterns. Each pattern
involves a relationship between an independent (e.g., differences
in relative proximity) and a dependent variable (e.g., RTs). Similar
to previous work (Krajbich et al., 2010), these measures were
computed as the p-values on the coefficients of a weighted least
squares regression, in which the dependent variables were given
by the difference between each subject’s mean and the average
value predicted by the model, and the weights were given by the
inverse of the variance.

Data and Code
The data and code used in the analyses are available at the Rangel
Neuroeconomics Lab website (www.rnl.caltech.edu).

RESULTS

In order to investigate the role of visual attention in perceptual
decision-making, we carried out two different experiments.
Experiment 1 was designed to test the extent to which the aDDM
provides a reasonable quantitative description of the relationship
between visual attention (as measured by fixations), choices and
reaction times (RTs) in simple perceptual decisions. Experiment
2 was designed to test a key prediction of the aDDM; namely,
that exogenous shifts in attention can bias perceptual decisions
in favor of the attended item.

The first experiment, depicted in Figure 1, required subjects
to make simple perceptual decisions about line orientations (see
Materials and Methods for details). At the beginning of each
block of trials, subjects were shown an oriented bar for 5 s,
which served as the target for the entire block (Figure 1A). The
orientation of the target was chosen from the set {20◦, 35◦, 55◦,
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70◦}. In each decision trial subjects were shown two oriented
bars, one on the left and one on the right, and had to decide
which of them had an orientation closest to the target orientation
by pressing a button (Figure 1B). The angular distance between
each of the lines and the target, denoted by 1, was chosen
randomly from the set {−15◦, −10◦, −5◦, 0◦, 5◦, 10◦, 15◦}
(Figure 1C), with the constraint that the two stimuli could not
have an equal orientation. Note that the correct response depends
only on the angular distance, which is a relative orientation
measure. For example, if 1left = −10o and 1right = 15o, the
correct response is left, and if the two stimuli are equidistant to
the target (e.g., if 1left = −10o and 1right = 10o), then either
choice is considered correct. In order to motivate subjects to
perform the task, a subset of the trials was selected at random at
the end of the experiment and subjects earned $1 for each correct
choice.

In order to familiarize the subjects with the stimuli, they also
participated in a training task at the beginning of each block in
which they were shown one oriented bar at a time and had to
judge if it had the same orientation as the target (Figure 1D).
Training was administered until a pre-specified performance
criterion was reached on each block. See Materials and Methods
for details.

Perceptual aDDM
The aDDM provides an algorithmic description of how
information is integrated over time in order to make a binary
perceptual choice, and of the role that fixations play in this
process. As illustrated in Figure 3, the model assumes that
choices are made by dynamically computing a relative decision
value (RDV) signal, which at any instant provides an estimate of
the relative attractiveness of the two options. The RDV begins at
zero and a choice is made the first time it crosses one of two pre-
established decision barriers: one at +1, indicating a choice for
left, and one at−1, indicating a choice for right.

The predictions of the model depend heavily on the dynamics
of the RDV. Let RDVt denote its value at time t within the course
of a single decision. At every time step 1t , its change is given
by µ1t + εt , where εt is i.i.d. zero mean white Gaussian noise

with standard deviation σ , and µ is the deterministic change in
the RDV over the time step, often called the slope of the process.
A critical assumption of the aDDM is that the slope of the RDV
signal depends on the location of the fixations at each time step.
In particular, µ = 0 until the first fixation to one of the two
stimuli occurs, as well as during non-stimuli fixations and inter-
fixation transitions, while µ = d(rleft − θrright) during fixations
to the left option, and µ = d(θrleft− rright) during fixations to the
right option. Here, d is a positive constant that controls the speed
of integration, θ is a parameter between 0 and 1 that measures
the size of the attentional bias, and rleft and rright are the relative
proximities of the left and right items shown in the trial.

The relative proximity of an option is a measure of its
attractiveness, which in this task is given by the negative of the
absolute value of 1, and can only take four values: {−15◦, −10◦,
−5◦, 0◦}. For ease of interpretation, and ease of comparison with
related studies (Krajbich et al., 2010, 2012; Krajbich and Rangel,
2011), we normalized the relative proximities to the scale {0,
1, 2, 3}, with 3 denoting the best possible proximity (i.e., an
orientation equal to the target), and 0 denoting the worst possible
proximity (i.e., an angular distance of either −15◦ or +15◦). We
chose the range to be from 0 to 3 because there were 4 possible
values for the angular distance between an item and the target.
Figure S3 illustrates the transformation from the angular distance
scale to the relative proximity scale.

The aDDM also makes a critical assumption about the fixation
process. It allows fixations to depend on properties of the stimuli
(as described below), but it assumes that the fixation process is
otherwise independent of the state of the RDV signal. In other
words, it assumes that there is no feedback from the path of the
decision process to the propensity to fixate on stimuli. We return
to this important assumption in the Discussion section.

No other major restrictions are placed on the fixation process,
except for those that are reflected in the empirically observed
properties of the fixations. First, the model assumes that the
location of the first fixation, and its latency, are independent
of the relative proximity of the two stimuli. To be precise, it
assumes that the first fixation is to the left item with a constant
probability p, and that the latency of this first fixation is drawn

FIGURE 3 | Two sample runs of the aDDM. (A) The two items have the same relative proximity, and the left item is chosen after 1,909 ms. (B) Right item has greater

relative proximity, and is chosen after 2,444 ms.
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from a fixed distribution. Second, subsequent fixations alternate
between the left and right items. Third, a maximal fixation
duration is drawn from a distribution at the beginning of each
fixation, and the fixations run their course unless a choice is
made by crossing a barrier before the end of the fixation. In this
case, the process terminates and the duration of the last fixation
is truncated. The distribution of maximal fixation durations is
allowed to depend on the fixation number, and on the difference
in relative orientation between the fixated and the unfixated
stimuli (see Materials and Methods for details). Importantly, we
only sample from non-last fixations, i.e., fixations that were not
terminated when the subject makes a choice. Fourth, fixations
are separated by inter-fixation transitions that are drawn from
another fixed distribution. As with the fixations, a maximal inter-
fixation transition duration is drawn from this distribution at the
beginning of each transition, and runs its course unless a barrier
is crossed before it terminates.

Several aspects of the model are worth highlighting. First, the
model has three free parameters: d, θ , and σ (the time step used
for binning the data was fixed at 10ms). This follows from the fact
that, in this class of models, multiplying the size of the barriers,
d and σ by a common positive constant does not change the
predictions of the model. As a result, we can fix the size of the
barriers to +1 and −1 without any loss of generality. Second, if
θ = 1, the model reduces to the standard drift-diffusion model
(DDM) (Ratcliff, 1978; Gold and Shadlen, 2002, 2007; Ratcliff
et al., 2003; Ratcliff and Smith, 2004; Smith and Ratcliff, 2004;
Bogacz, 2007; Ratcliff and Mckoon, 2008) and therefore item
fixations become irrelevant. Thus, the model includes as a special
case the possibility that attention plays no role in choices. Third,
if θ < 1, the model predicts that changes in fixations can affect
choices. The intuition for why this is the case is illustrated in
Figure 3A, which depicts a sample run in which rleft = rright = 2.
In the absence of an attentional bias (i.e., when θ = 1), the
mean slope of the RDV signal is zero and the choice and RT are
determined solely by the noise in the process. In contrast, when
θ = 0.5, as shown in the figure, the mean slope of the RDV
signal is positive during left fixations and negative during right
fixations (i.e., the integrator moves toward the fixated item on
average). Fourth, when θ < 1, exogenous shifts (i.e., unrelated
to the perceptual properties of the stimuli) in fixations toward an
item can bias choices toward that item, and the magnitude of the
bias increases as θ decreases. For instance, as shown in Figure 3B,
when rleft < rright and θ = 0.5, the attentional bias strengthens
the negative slope toward the right item barrier during right
fixations. Fifth, the assumption that the fixation process does not
depend on the state of the RDV signal implies that one can think
of the aDDMas amodel of the decision process that takes as given
the empirical relationship between fixations and various non-
aDDM variables (e.g., fixation number or relative proximity),
presumably because the choices and fixations are controlled by
distinct systems.

Basic Psychometrics
We began the analysis by characterizing the basic psychometrics
of the task, which resembled the patterns commonly found in
previous perceptual (Ratcliff et al., 2003, 2009; Churchland et al.,

2008; Deco et al., 2010; Bode et al., 2012; Bowman et al., 2012; Van
Vugt et al., 2012; White et al., 2012; Brunton et al., 2013; Ossmy
et al., 2013) and value-based decision-making studies (Gold and
Shadlen, 2007; Krajbich et al., 2010, 2012; Mormann et al., 2010;
Krajbich and Rangel, 2011; Hunt et al., 2012; Tsetsos et al., 2012a;
Philiastides and Ratcliff, 2013). Choices were well described
by a logistic function of the relative attractiveness of the two
items with a significant but negligible bias (mixed effects logistic
regression: constant= 0.08246, p= 0.0115, slope= 1.15047, P <

10−16; Figure 4A). The mean frequency of correct trials across
subjects was 86.3% (SD = 5.1%). Reaction times decreased as
choice ease increased (mixed effects linear regression: slope =

−277.77 ms, p = 10−11; Figure 4B). We measured choice ease
using the relative proximity difference between the items with
the closest and farthest orientations to the orientation of the
target. The mean reaction time was 1,849ms (SD= 613ms). Also
consistent with previous studies (Krajbich et al., 2010; Krajbich
and Rangel, 2011), we found that the number of fixations per
trial decreased as choice ease increased (mixed effects linear
regression: slope = −0.28 fixations, p = 10−20; Figure 4C). The
mean number of fixations was 2.83 (SD = 0.39). Together, these
analyses showed that our perceptual task exhibits psychometric
properties common in 2-alternative forced choice tasks, which
are predicted by a wide class of sequential integrator models,
including the aDDM.

Properties of Fixations
We recorded fixations using an eye-tracker, which allowed us to
characterize their properties during the choice process. For this
purpose, we classified each item fixation as “first,” “middle” or
“last,” according to when it occurred within the trial. “Middle”
fixations are those that are neither the first nor the last ones.

We found that the probability that the first fixation is to the
item with closest orientation to the target was not significantly
different from chance, and was independent of the relative
proximity difference between the two stimuli (mixed effects
linear regression: slope = −0.009, p = 0.095). Moreover, we
found that the duration of first fixations increased with the
relative proximity of the fixated item (mixed effects linear
regression: slope = 30.55 ms, p = 10−12; Figure 5A), decreased
with the relative proximity of the unfixated item (mixed effects
liner regression: slope = −11.36 ms, p = 10−7), and increased
with the relative proximity difference between fixated and
unfixated items (mixed effects linear regression: slope = 17.67
ms, p = 10−14; Figure 5B). We did not find a significant
correlation between first fixation durations and choice ease
(mixed effects linear regression: slope = −1.36 ms, p = 0.55;
Figure 5C).

When looking at middle fixations, we found that their
duration increased with the relative proximity of the fixated item
(mixed effects linear regression: slope = 59.9 ms, p = 10−17;
Figure 5D), and decreased with the relative proximity of the
unfixated item (mixed effects linear regression: slope = −40.187
ms, p = 10−5). Middle fixation durations also increased with
the relative proximity difference between the fixated and the
unfixated items (mixed effects linear regression: slope = 40.77
ms, p= 10−21; Figure 5E). Finally, we found that middle fixation
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FIGURE 4 | Basic psychometrics for Experiment 1. (A) Psychometric choice curve. (B) RT curve depicting mean response times vs. trial ease, as measured by the

difference in absolute proximity between the correct and incorrect options. (C) Mean number of fixations vs. trial ease. Subject data includes only even-numbered

trials. Fitted model is the best fitting aDDM with free θ , and θ = 1 corresponds to the DDM. Error bars show 95% confidence intervals for the data pooled across all

subjects, and across all simulated trials in the case of the data predicted by the models. Tests are based on a paired two-sided t-test.

A B C

D E F

FIGURE 5 | Fixation properties. (A) First fixation duration as a function of the relative proximity of the fixated item. (B) First fixation duration as a function of the relative

proximity difference between the fixated and the unfixated items. (C) First fixation duration as a function of choice ease. (D) Middle fixation duration as a function of the

relative proximity of the fixated item. (E) Middle fixation duration as a function of the relative proximity difference between the fixated and the unfixated items. (F)

Middle fixation duration as a function of choice ease. Error bars show 95% confidence intervals for the data pooled across all subjects.
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durations decreased as choices became easier (mixed effects
linear regression: slope=−24.4 ms, p= 0.00075; Figure 5F).

These findings show that the observed fixations patterns
are consistent with the assumptions of the aDDM described
above. Importantly, note that these analyses did not include last
fixations because their duration is endogenous in the aDDM,
even under themaintained hypothesis that fixation durations and
locations are not affected by the state of the choice process. The
endogeneity of the last fixations follows from the simple fact that
they are terminated whenever the choice is made upon crossing a
barrier.

Model Fitting
Wedivided the data into even- and odd-numbered trials, used the
odd trials to fit the free parameters of the aDDM using maximum
likelihood estimation (seeMaterials andMethods for details), and
then tested the predictions of the model out-of-sample using the
even trials. The best fitting parameters resulting from the group-
level MLE were d = 0.0041, σ = 0.063 and θ = 0.36 (using
a time step of size 10 ms). Since θ is much smaller than 1, this
suggests a sizable attentional bias.

We then used the best fitting parameters to simulate behavior
in the even-trials, and compared it to the actual observed data
(see Materials and Methods for details). The simulated data
provided a reasonably good qualitative and quantitative match to
the observed out-of-sample behavior. The psychometric choice
curve (Efron’s pseudo R2 = 0.086; Figure 4A) predicted that
choices are a logistic function of relative orientation differences,
and that reaction times (goodness-of-fit: p = 0.10, Figure 4B)
and number of fixations (goodness-of-fit: p = 0.22, Figure 4C)
decrease as choice ease increases.

In the Supplementary Materials we present three additional
sets of results that might be of interest to the reader. First,
we provide individual subject fits. Second, we estimate a non-
linear version of the aDDM and find that the best fitting model
is approximately linear (as in the basic aDDM). Third, we fit
the aDDM separately for trials in the first half of each block,
where the memory of the target orientation is fresh, and trials
in the second half of the block, where the memory of the target
orientation might have dissipated. The best fitting parameters in
both cases are very similar, which suggests that this was not an
issue affecting performance in the task.

Model Predictions
We next tested for several basic predictions of the aDDM.

First, the model predicts that final fixations should be shorter
than middle fixations. This prediction follows from the fact that,
according to the model, last fixations are interrupted when the
RDV reaches one of the barriers, cutting the last fixation short.
We found this to be the case in our data, as both second fixations
as well as other middle fixations (middle fixations excluding
second fixations) are significantly longer than last fixations (p =

10−9 and p= 10−15, respectively; Figure 6A).
Second, the model predicts that subjects should exhibit a bias

toward choosing the last fixated item, even in trials where they
have fixated on both of them. This prediction follows from the
fact that when θ < 1, the RDVmoves toward the decision barrier

of the fixated item unless it is significantly less desirable than the
other item. For example, when θ = 0.5, the RDV moves toward
the left barrier when fixating left as long as rleft > 0.5 rright .
This pattern was observed both in the data and the simulations
(Efron’s pseudo R2 = 0.11; Figure 6B).

Third, the model predicts a very specific relationship between
the duration of the last fixation and the pattern of previous
fixations. At any point in time within the trial, we can compute
the relative fixation time of the fixated item, given by the total
fixation time on that item thus far minus the total fixation time
on the other item thus far. The model predicts that in trials
where the last fixated item is chosen, the duration of the last
fixation decreases with its relative fixation time computed at the
beginning of the last fixation. This effect is due to the nature of
the RDV signal: when θ < 1, the longer an item is fixated in
the trial, the more the signal will move toward its barrier, so the
last fixation to the other item (which will eventually be chosen)
will have to be longer so that the signal can move back toward its
barrier. As shown in Figure 6C, this effect was present in the data
(mixed effects linear regression: slope = −0.28, p = 10−11) and
the simulations (goodness-of-fit: p= 0.48).

Choice Biases
The aDDM also predicts several choice biases when θ < 1, which
we tested next.

First, the model correctly predicts a last-fixation bias: subjects
are more likely to choose the last item fixated in the trial (Efron’s
pseudo R2 = 0.11 for left last fixated, and 0.084 for right last
fixated; Figure 7A), due to the fact that the relative proximity
of the unfixated item is underweighted in the RDV integration
process. Note that a sizeable bias effect can be seen both in our
data as well as in the simulations (for instance, when rleft−rright =
0, the difference in the probability of choosing left when left was
last fixated vs. when right was last fixated is 0.51 for the data, and
0.26 for the simulations).

Second, the model predicts that the probability of choosing an
item increases with its overall relative fixation time. This follows
from the fact that, because the RDV moves toward the barrier of
the fixated item (unless it is significantly worse than the other
one), the RDV is more likely to move in the direction of an
item’s barrier when that item is being fixated than when it is
not. Consistent with this, we found a strong association between
overall relative fixation times and choices (Efron’s pseudo R2 =
0.14; Figure 7B). However, a concern with this test is that overall
relative fixation times and relative proximity are correlated. To
correct for this, we computed a corrected choice probability curve
by subtracting from each trial’s choice (1 for left and 0 for right)
the average probability of choosing left for that particular relative
proximity difference. This curve provides an uncontaminated
measure of the effect of relative fixation at the time of choice,
under the assumptions of the aDDM. As shown in Figure 7C, the
observed choice bias was sizable, and matched well the simulated
data (goodness-of-fit: p= 0.038).

Finally, the model also predicts that the likelihood of choosing
the first seen item increases with the duration of the first
fixation. This was observed in the data (mixed effects linear
regression: slope = 0.00075, p = 10−35; Figure 7D) and in the
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FIGURE 6 | Model predictions. (A) Fixation duration by type. As predicted by the model, last fixations are shorter than middle fixations. Note that, except for last

fixations, the match between the data and the model is a direct consequence of our fixation sampling process. (B) Probability that the last fixation is to the chosen

item as a function of the relative proximity difference between the last fixated item and the other item. In the absence of a bias effect, the probability at 0 should be

around 0.5; due to the bias, the observed probability is significantly larger than 0.5. (C) Amount of time spent looking more at item A before the last fixation (to item B),

as a function of the duration of that last fixation. Subject data includes only even-numbered trials. Fitted model is the best fitting aDDM with free θ , and θ = 1

corresponds to the DDM. Error bars show 95% confidence intervals for the data pooled across all subjects, and across all simulated trials in the case of the models.

simulations (Efron’s pseudo R2 = 0.088). The effect was still
present after correcting for relative proximity differences, by
subtracting from each trial’s choice the average probability of
choosing the first-seen item for that particular relative proximity
difference (goodness-of-fit: p= 0.021; Figure 7E).

Model Comparison
As discussed above, the aDDM reduces to the standard DDM,
in which fixations do not affect choices or RTs, when θ = 1.
This provides an additional way of exploring the role of visual
attention, by comparing the ability of the best fitting aDDM and
the best fitting DDM to explain the data out-of-sample.

This was done in several steps. First, we re-estimated the
model in the odd-numbered trials under the restriction that θ =

1, which amounts to finding the best fitting DDM.We found that
the best fitting parameters in this case were d = 0.0024 and
σ = 0.062. In contrast, the best fitting parameters for the aDDM
were d = 0.0041, σ = 0.063, and θ = 0.36.

Second, we used these best fitting parameters to carry out the
same out-of-sample predictions described above, but for the best
fitting DDM. As shown throughout the figures, the results show
that when θ = 1 the model cannot account for key aspects of the
data patterns and choice biases. For example, consider Figure 6B,
which shows that there is a sizable choice bias in favor of the last
fixation. As the figure shows, the best fitting aDDM can account
for this pattern, which follows from the overweighting of rfixated

relative to runfixated. In contrast, the best fitting standard DDM
cannot explain this pattern since attention does not matter in that
model.

Third, we compared the ability of the two models to predict
choices and RTs out-of-sample, which provides a test of the value
of fixation data in predicting choices and RTs (see Materials and

Methods for details). We compared the accuracy of three types
of predictions. For the standard DDM we predicted choices and
RTs in the even-numbered trials, conditional only on rleft and

rright , since fixations do not matter in this case. For the aDDMwe
carried out two different sets of predictions. In one of them we
predicted choices and RTs, conditional on rleft , rright and on the
net fixation time on the left item (i.e., total fixation time on left
minus total fixation time on right) in each even trial. In the other,
we made predictions based on rleft , rright and, as much as possible,
on the actual path of fixations observed on each trial. The
most accurate predictions were made by the best fitting aDDM
conditional on net fixation time (choice prediction accuracy =

72.3%, average RT absolute error = 1.92 s). The second most
accurate predictions were made by the other aDDM exercise
(choice prediction accuracy = 70.1%, average RT absolute error
= 2.49 s). The least accurate predictions were made by the best
fitting DDM (choice prediction accuracy = 68.4%, average RT
absolute error = 2.69 s). To put these numbers in perspective,
note that the standard deviation of RTs is 1.87s. Together, these
results suggest that incorporating fixation information in the way
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FIGURE 7 | Choice biases. (A) Psychometric choice curves conditioned on the location of the last fixation. (B) Probability that the left item is chosen as a function of

the excess amount of time for which the left item was fixated during the trial. (C) Analogous to (B), except subtracting the average probability of choosing left for each

relative proximity difference. (D) Probability that the first-seen item is chosen as a function of the duration of that first fixation. (E) Analogous to (D), except subtracting

the average probability of choosing the first-seen item for each relative proximity difference. Subject data includes only even-numbered trials. Fitted model is the best

fitting aDDM with free θ , and θ = 1 corresponds to the DDM. Error bars show 95% confidence intervals for the data pooled across all subjects, and across all

simulated trials in the case of the models. Tests are based on a paired two-sided t-test.

specified by the aDDM improves the out-of-sample predictions
made by this class of models.

It might seem counter intuitive that predictions that condition
on the observed fixations as much as possible perform worse
than those that condition only on observed net fixation time.
However, this makes sense once the randomness in the aDDM
model is taken into account. Since the model entails significant
randomness, repeated runs of the model with the same stimuli
will result on different choices, RTs, and net fixation times, even
if they follow the same fixation pattern as much as possible. As
a result, repeated runs of the exact same trials can result in net
fixations times that are significantly different from those observed
in the trial that we are trying to predict, even if the repeated runs
require that fixations follow the same process as long as possible
(see Section Materials and Methods for details). In contrast, the
other set of aDDM predictions are made using runs of the aDDM
that result in nearly identical net fixation times. This leads to
better predictions because net fixation time on the two items
affects the average slope of integration in the diffusionmodel, and
thus choices and RTs. Consistent with this, the standard deviation
in the simulated net fixation times was 276 ms in the first aDDM
prediction model, 886 ms in the second aDDMprediction model,
and 2,603 ms in the DDM prediction model.

Experiment 2: Causal Test of the
Attentional Effect
So far we have found that the aDDM provides a reasonable
quantitative and qualitative account of the relationship between

fixations, choices and RTs in our perceptual task. Importantly,
while the aDDM predicts a causal impact of attention on
perceptual choice, the evidence presented so far is only
correlational. We addressed this issue using an experimental
paradigm that manipulates item fixation times with the aid of
an eye-tracker, and which has been previously shown to causally
affect subjects’ choices on a moral decision task (Pärnamets et al.,
2015).

The task, depicted in Figure 2, consisted of a modification
of the previously described perceptual choice task. The key
difference is that in each trial we randomly selected one of the
two items on the screen to be the bias-target for that trial, and
implemented the following procedure to bias fixation toward that
item (seeMaterials andMethods for details). Unbeknownst to the
subjects, we defined a minimum period of time required for them
to fixate on each item before a decision could be made: 800 ms
for the bias-target and 200 ms for the non-bias-target. We then
used the eye-tracker to record the duration of each fixation and,
as soon as the minimum requirement for both items was met,
the items disappeared from the screen, and the subject was asked
to make a choice. Note that this requirement does not guarantee
that the bias-target will be fixated longer, since it only establishes
a minimum amount of time for each item to be fixated, but not a
maximum amount. To ensure that subjects would not become
aware of our manipulation, we set the maximum duration for
each decision trial at 3 s. If the minimum fixation requirements
for both items were not met within that period, the subject was
prompted to make a decision, and the trial would be discarded
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from all future analyses. Overall, 24.3% of the trials (1,633 trials)
were discarded in this manner. We refer to trials in which the
manipulation was effective (i.e., in which the bias-target was
fixated longer) as effective trials. In order to increase the number
of effective trials, we also attempted to guide subjects’ first item
fixations toward the bias-target (Hikosaka et al., 1993), so that it
would have a better chance of being fixated longer. In particular,
the bias-target stimulus was always displayed first, and the other
stimulus appeared on the screen after a short delay (duration:
mean= 450 ms, SD= 35 ms). Using this manipulation, 74.3% of
the non-discarded trials were effective (i.e., a total of 3780 trials
were effective).

To check the success of the experimental manipulation, we
compared the overall relative fixation time advantage of the
left item in all trials from Experiment 1 vs. all effective trials
in Experiment 2. As shown in Figure 8A, in Experiment 1 the
left time advantage increased with the difference in relative
proximity, while in Experiment 2 the bias-target was fixated
longer regardless of the items’ relative proximity. In effective
trials, the mean total fixation time on the bias-target was 814.2
± 85.8 ms, while for the other item it was 509.2± 46.1 ms.

As predicted by the aDDM, we found that the probability of
choosing the left item was higher on trials where the left item
was the bias-target than on those where the right item was the
bias-target (Figure 8B). To appreciate the magnitude of the bias,
note that when rleft − rright = 0, the probability of choosing left

increases by 14% across the two conditions (χ2 statistic = 16.51,
p= 10−5).

Importantly, the magnitude of the bias is comparable in
magnitude to what we found in Experiment 1. In particular, the
slope of the corrected choice curve in Figure 7C is ∼0.02, which
implies that a shift in relative fixation of 300 ms (which is similar
in size to the one induced by the experimental manipulation
in Experiment 2) should induce about a 6% increase in the
probability of choosing the item. Figure 8C shows a comparison
of this effect between Experiments 1 and 2, illustrating that the
quantitative effects of the causal manipulation in Experiment
2 are consistent with the measurements from Experiment 1,
providing additional support for the validity of the causal
manipulation.

A natural concern with these results is that the observed effect
might have been due, in part, to priming: since the first fixation
was manipulated to be to the bias-target item, this could have
primed the subjects to bias their choices in this direction (Meyer
and Schvaneveldt, 1971; Nedungadi, 1990). Another concern is
that, by discarding trials in which the manipulation was not
effective, we are biasing the results toward the hypothesis that
longer fixations increase the probability of choosing the fixated
option. To address these issues, we split the trials into two sets
based on whether or not the bias-target was the longest fixated
item in the trial (i.e., effective vs. ineffective trials), regardless of
which item was fixated first, and compared the size of the bias

A

C

B

FIGURE 8 | Causal test of the attentional effect. (A) Time advantage of the left item over the right item comparing effective trials from Experiment 2 to all trials from

Experiment 1. (B) Psychometric choice curves conditioned on the bias-target item. Subjects choose the bias-target with higher probability. Shaded error bars show

95% confidence intervals for the data pooled across all subjects. (C) Corrected probability that the left item is chosen as a function of the excess amount of time for

which the left item was fixated during the trial, comparing all trials from Experiment 1 to all trials from Experiment 2. Corrected probabilities are obtained by subtracting

from each trial’s choice (1 for left and 0 for right) the average probability of choosing left for the relative proximity difference from that trial.
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in these two types of trials (Figure 9). If the observed effect were
exclusively due to priming, one would expect a similar choice bias
in both groups of trials. In contrast, the aDDMpredicts a stronger
choice bias in the trials in which the bias-target was fixated longer.
Consistent with this, we found that the choice-bias was larger in
trials where the bias-target was fixated longer than in those when
it was fixated less (comparison of the individual biases in logit
regressions: mean constant difference 1.45 vs. 0.57, paired t-test t
= 7.13 and p = 10−8 vs. t = 0.27 and p = 0.79; when the bias-
target was longest fixated, Figure 9A, mean total fixation time
was 814ms for the bias-target and 509ms for the non-bias-target,
and when the bias-target was least fixated, Figure 9B, mean total
fixation time was 801 ms for the bias-target and 1,132 ms for the
non-bias-target).

DISCUSSION

The results described above provide evidence consistent with
the hypothesis that the aDDM gives a plausible algorithmic
description of the impact of attention in simple perceptual
decision-making. Experiment 1 shows that the model is able to
provide a reasonably good (although not perfect) quantitative
description of the relationship between fluctuations in visual
attention, choices and reaction times. Experiment 2 shows that
the impact of attention in choice predicted by the aDDM is
causal, and of a qualitatively similar size as that predicted by the
best fitting model in Experiment 1.

The imperfect match between our data and the model
simulations could be due to at least two important factors. First,
the model we used to simulate the fixation process is a simplistic
approximation, which, under the assumptions of the aDDM,
adds noise to the simulations. Second, the results presented for
the model simulations are averaged across trials, so the fact that
they are not conditioned on the same fixations present in the data
also adds noise.

The version of the aDDM tested here is virtually identical to
the one used in previous value-based choice studies (Krajbich

et al., 2010, 2012; Krajbich and Rangel, 2011; Towal et al., 2013).
The only difference is that in value-based choice the evidence that
is integrated is composed of noisy measurements of preference
for the stimuli, whereas here it is noisy perceptual signals about
line orientation. This suggests that a similar simple class of
algorithms with only three free parameters is able to provide
a quantitative characterization of several complex behavioral
patterns in the data, such as the impact of relative fixation
durations, or the impact of first fixations. This provides further
support for the view that the brain utilizes similar algorithms,
and perhaps similar neural architectures, for sufficiently similar
classes of problems, even if they operate in domains as different
as perception and value-based choice.

Suggestively, the attentional bias we found in this study
(θ = 0.36) is substantial and of similar size to the bias found
in previous value-based studies (θ = 0.3) (Krajbich et al.,
2010). This result leads us to speculate that attentional biases
might be sizable in any simple decision task (perceptual or
value-based) in which fixations facilitate the evidence gathering
process.

An important feature of the aDDM is that it posits a causal
impact of attention on choice. In particular, it assumes that
the evidence related to fixated items is weighted more heavily
during the decision process, and as a result choices can be
biased toward a stimulus by increasing its share of fixations.
Furthermore, when the attentional bias parameter is much
smaller than 1, the predicted biases can be sizable. Previous
studies of value-based choice with exogenously manipulated
fixations have found causal effects in the predicted direction,
but of smaller magnitude than predicted by the model (Shimojo
et al., 2003; Armel et al., 2008). One potential explanation for
the small effect sizes is that the experimental manipulations
had limited success in shifting attention. Experiment 2 provides
evidence consistent with this interpretation. Here we utilized a
different experimental manipulation of attention that was able to
shift fixations and found a causal effect of a similar magnitude
as the one predicted by the model. In fact, our attentional
manipulation was inspired by a recent study of attention and

A B

FIGURE 9 | Experiment 2 choice curves. Experiment 2 psychometric choice curves conditioned on the bias-target item and on whether the bias-target was the

longest (A) or least (B) fixated item in the trial (as measured by the total fixation time on each item).
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moral decisions, which also found sizable effects (Pärnamets
et al., 2015).

A critical assumption of the aDDM is that the fixation process
is independent from the sequential integration process. More
precisely, random fluctuations in the RDV variable that guides
the choices do not affect the fixation process. We emphasize that
this does not rule out the possibility that stimulus properties
orthogonal to the decision process might affect fixations. In fact, a
recent study in the domain of value-based choice showed that the
fixation process was affected by low level visual features (Towal
et al., 2013), and several others have provided evidence that the
value integration process is modulated by the saliency of the
stimuli (Tsetsos et al., 2012a, 2016). Instead, the key assumption
of the model is that the actual integration process does not affect
the fixation process. Thus, the aDDM can be thought of as a
model of the decision process, taking as given the exogenous and
potentially stochastic fixation process. In this study, as well as
previous ones (Krajbich et al., 2010; Krajbich and Rangel, 2011;
Towal et al., 2013), this is implemented by taking the fixation
process to be the one that best describes the one observed in the
data.

We do not view our results as providing evidence for the
hypothesis that the attentional process is not influenced by
the state of the decision process variables. In fact, studies of
value-based choice with large numbers of items have found
that fixations are shifted toward the best items several seconds
into the decision process (Reutskaja et al., 2011). Instead, our
results suggest that these additional influences on attention have a
limited impact on the choice process, since most of the effects are
already accounted for by the simpler aDDM. However, we also
conjecture that “top-down” modulations of attention are more
likely to occur in more complex decisions with longer reaction
times. A full characterization of how the decision process affects
attention, and how this feeds back to the choices, is a critical open
question for ongoing research. For example, a recent study has
shown that some of the choice bias toward the last fixated item
shown here can arise in multiple types of integrator models, even
when attention is entirely random and independent of the choice
process (Reutskaja et al., 2011; Mullett and Stewart, 2016).

The aDDM provides a simple way of introducing attention
in sequential integrator models of choice, by adding an extra
parameter to the most basic version of the Drift Diffusion
Model. However, similar modifications could be introduced
to a number of other sequential integrator models of choice,
including leaky-accumulator models (Usher and Mcclelland,
2001), neural network models of the choice process (Wong and
Wang, 2006; Hunt et al., 2012), or more complex versions of
the Drift Diffusion Model (Churchland et al., 2008; Ratcliff and

Mckoon, 2008; Mormann et al., 2011; Hawkins et al., 2015),
among others. Such modifications would have qualitatively
similar effects, provided that the assumption that fixations are
orthogonal to the state of the decision process is maintained.
Given the active debate in the literature about which sequential
integrator model provides the best description of the underlying
processes, an important direction for future research is to carry
out a systematic comparison of the attentional versions of all of
these models.

The aDDM models the effects of attention at a high level of
abstraction. Another important question for future research is to
characterize the neural mechanisms behind the attentional effects
captured by the model. For example, does attention operate at
the perceptual stage, prior to the integration of the information
by the decision process, or does it operate in the decision
process itself? Does attention operate through similar channels
in perceptual and value-based choice, and if so, why does it have
a similar effect on choice?
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