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SUMMARY

Wepropose a neurocomputationalmodel of altruistic
choice and test it usingbehavioral and fMRIdata from
a task in which subjects make choices between real
monetary prizes for themselves and another. We
show that a multi-attribute drift-diffusion model, in
which choice results from accumulation of a relative
value signal that linearly weights payoffs for self and
other, captures key patterns of choice, reaction
time, andneural response in ventral striatum, tempor-
oparietal junction, and ventromedial prefrontal cor-
tex. The model generates several novel insights into
the nature of altruism. It explains when and why
generous choices are slower or faster than selfish
choices, and why they produce greater response
in TPJ and vmPFC, without invoking competition
between automatic and deliberative processes or
reward value for generosity. It also predicts that
when one’s own payoffs are valued more than
others’, some generous acts may reflect mistakes
rather than genuinely pro-social preferences.

INTRODUCTION

Altruism involves helping others at a cost to the self, not only

when such behavior is supported by strategic considerations

like reciprocity or cooperation (Dufwenberg and Kirchsteiger,

2004; Falk and Fischbacher, 2006; Nowak and Sigmund, 1998)

but even in the absence of expectation for future benefit (e.g.,

fully anonymous, one-time generosity; Batson, 2011; Fehr and

Fischbacher, 2003). A major goal of neuroeconomics is to

develop neurocomputational models of altruistic choice, speci-

fying which variables are computed, how they interact to

make a decision, and how are they implemented by different

brain circuits. Such models have proven useful in domains

such as perceptual decision making (Gold and Shadlen, 2007;

Heekeren et al., 2008), simple economic choice (Basten et al.,

2010; Hunt et al., 2012; Rangel and Clithero, 2013), self-control

(Hare et al., 2009; Kable and Glimcher, 2007; Peters and Büchel,
2011; van den Bos andMcClure, 2013), and social learning (Beh-

rens et al., 2008; Boorman et al., 2013). We propose a neuro-

computational model of simple altruistic choice and test it using

behavioral and fMRI data from a modified Dictator Game in

which subjectsmake choices between pairs of real monetary pri-

zes for themselves ($Self) and another ($Other). These choices

involve a tradeoff between what is best for the self and what is

best for the other and thus require people to choose to act self-

ishly or generously.

Our model assumes that choices are made by assigning an

overall value to each option, computed as the weighted linear

sum of two specific attributes: monetary prizes for self and other.

This type of simple value calculation captures a wide range of

behavioral patterns in altruistic choice (Charness and Rabin,

2002; Eckel and Grossman, 1996; Engel, 2011; Fehr and Fisch-

bacher, 2002; Fehr and Fischbacher, 2003). Our model also as-

sumes that the overall value signal is computed with noise and

that choices are made using a multi-attribute version of the Drift-

Diffusion Model (DDM; Ratcliff and McKoon, 2008; Smith and

Ratcliff, 2004). In this algorithm, a noisy relative value signal is in-

tegrated at each moment in time and a choice is made when suf-

ficient evidence has accumulated in favor of one of the options.

This type of algorithm has been shown to provide accurate de-

scriptions of both choice and reaction time (RT) data (Busemeyer

and Townsend, 1993; Hunt et al., 2012; Krajbich et al., 2010;Milo-

savljevic et al., 2010; Rodriguez et al., 2014; Smith and Ratcliff,

2004), as well as neural response patterns associated with

computing and comparing values (Basten et al., 2010; Hare

et al., 2011; Hunt et al., 2012) in many non-social domains.

The model suggests neural implementation of two specific

quantities. First, values for the attributes $Self and $Other

must be computed independently. Second, an overall value

signal must be constructed from the independent attributes.

We hypothesized that areas like the temporoparietal junction,

precuneus, or medial prefrontal cortex may compute quantities

related to the value of these attributes. Prior research strongly

implicates these regions in social behavior (Bruneau et al.,

2012; Carter and Huettel, 2013; de Vignemont and Singer,

2006; Decety and Jackson, 2006; Hare et al., 2010; Jackson

et al., 2005; Moll et al., 2006; Saxe and Powell, 2006; Singer,

2006; Waytz et al., 2012; Zaki and Mitchell, 2011), although their

precise computational roles remain poorly understood. Inspired

by a large body of work on the neuroeconomics of non-social
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Figure 1. Task Design and Model

(A) The task consisted of a decision phase, in which subjects chose whether to accept the proposed payment-pair or a default of $50 to both individuals, and a

subsequent outcome phase, in which subjects discovered whether their choices had been implemented (60% of trials), or reversed, resulting in the non-chosen

option (40% of trials).

(B) Proposed transfers used in the experiment describing $Self and $Other. The alternative was always a transfer of $50 to both subjects. x and y axes represent

distance from default offer. The filled area in each transfer is proportional to the percentage of pro-social choices across all subjects.

(C) In the DDM model, choices are made through the noisy accumulation of a relative value signal (RDV), based on a weighted sum of the amounts $Self and

$Other available on each trial. A response occurs when this accumulated value signal crosses a threshold, with an RT equal to the total accumulated time + a non-

decision time (NDT) to account for sensory and motor-related processes unrelated to the comparison process itself.
choice (Basten et al., 2010; Hare et al., 2009; Kable and

Glimcher, 2007; Lim et al., 2013; McClure et al., 2004; Tom

et al., 2007), we additionally hypothesized that the integration

of specific attribute signals would occur in ventromedial prefron-

tal cortex (vmPFC). We explore these hypotheses with our fMRI

dataset.

We also highlight three ways in which the development of a

computational model of altruistic choice can be used to generate

novel insights into the nature of altruistic choice. First, we

compare the model’s predictions about RT and neural response

for generous versus selfish choices. We find that, for the best-

fitting parameters, the model predicts longer RT and higher

blood-oxygen-level-dependent (BOLD) response in decision-

related regions for generous choices and that the predicted ef-

fect sizes match the observed data. Second, we use simulations

to identify how model parameters influence altruistic behavior

and find that several of these variables (including the relative

importance of benefits to self and other and the decision bound-

aries of the DDM) predict observed individual differences in gen-

erosity. Third, we show that the model predicts that generous
452 Neuron 87, 451–462, July 15, 2015 ª2015 Elsevier Inc.
decisions are sometimes unintended mistakes resulting from

the noisy choice process and exploit an aspect of our experi-

mental design to test this using fMRI data.

RESULTS

We collected whole-brain BOLD responses in male subjects

while they made 180 real decisions about different allocations

of money between themselves and a real-but-anonymous part-

ner. Each trial consisted of a choice phase and an outcome

phase (Figure 1A). During the choice phase, the subject saw a

proposal consisting of monetary prizes for himself ($Self) and

for another person ($Other) and had to decide whether to accept

or reject it in favor of a constant default prize of $50 for each. On

each trial the subject saw one of the nine proposal types de-

picted in Figures 1B and 2C–2D, with ±$1–$4 random jitter

added to avoid habituation. All proposals included one payment

below and one payment above the default, creating a choice

between generous behavior (benefitting the other at a cost to

oneself) and selfish behavior (benefitting oneself at a cost to



Figure 2. Model Fits to Behavior

(A) Model-predicted versus observed average

generosity across subjects. Dashed 45� line rep-

resents a perfect match.

(B) Model-predicted versus observed overall

response time (RT).

(C and D) Within-subject acceptance likelihood (C;

mean ± SEM) and RT (D; mean ± SEM) for each of

the 9 proposal types. Observed behavior, gray

bars. Predict behavior, blue circles.
another). Subjects indicated their decision using a four-point

scale (1 = Strong No, 2 = No, 3 = Yes, 4 = Strong Yes), allowing

us tomeasure both the choice and the value assigned to the pro-

posal. Right-left orientation of the scale varied randomly from

scan to scan to reduce motor-related confounds in neural

response. Every decision was followed by an outcome phase,

during which the decisionmade by the subject was implemented

with 60% probability and reversed with 40% probability. Sub-

jects were told about the 40% probability of choice reversal

and that their partner knew their choices might be reversed

but were encouraged to simply choose the option they most

preferred, since their choice made it more likely to occur (see

Supplemental Experimental Procedures for instructions). At the

end of the experiment, one trial was randomly selected and its

outcome implemented. As shown below, the reversal mecha-

nism allows us to test the extent to which different choices

may be decision mistakes, while not changing incentives to

pick the best option.

Average Choices Are Relatively Selfish
Subjects made generous choices—maximizing their partner’s

payoff ($Other) at a cost to their own ($Self)—in 21% ± 18%

(mean ± SD) of trials, sacrificing $3.73 ± $4.64 per trial and giving
Neuron 87, 451–
$8.31 ± $6.86. This level of giving is com-

parable to other studies of anonymous

altruism (Engel, 2011) but also suggests

that subjects in general behaved rela-

tively selfishly. There was considerable

individual variation in generosity, ranging

from 0%–61% generous choices and

$0–$22.37 given to the partner. This vari-

ation is useful for exploring individual dif-

ferences, as we do below.

Computational Model
Themodel is amulti-attribute extension of

the standard DDM (Ratcliff and McKoon,

2008; Smith and Ratcliff, 2004). On every

trial the choice is based on a dynamically

evolving stochastic relativedecision value

(RDV) signal that provides an estimate

of the desirability of the proposed prize

($Self, $Other) relative to the default

prize ($50, $50). The signal starts at zero,

remaining there for an amount of non-de-

cision time capturing processing and
motor delays, given by the parameter NDT. Afterward, it accu-

mulates stochastically at time t according to the difference

equation

RDVt =RDVt�1 +wselfð$Self � $50Þ+wotherð$Other � $50Þ+ εt;

where $Self and $Other are the proposed prizes for self and

other,wself andwother are constant weights, and εt denotes white

Gaussian noise that is identically and independently distributed

with standard deviation s. A choice is made the first time the

RDV crosses one of two pre-specified barriers. The proposal is

accepted if the positive barrier is crossed first and rejected if

the negative barrier is crossed first. RT equals the sum of the

NDT and crossing time t. Building on previous work with time-

limited decisions (Churchland et al., 2008; Cisek et al., 2009; Mi-

losavljevic et al., 2010), we allow for the possibility of collapsing

barriers, although the model includes fixed barriers as a special

case. The upper barrier is described by the equation

Bt =be�td;

where b > 0 is a parameter denoting the initial height of the bar-

rier, dR 0 is a parameter denoting its exponential rate of decay,

and t is measured from the end of the non-decision period. The
462, July 15, 2015 ª2015 Elsevier Inc. 453



Table 1. Parameters of the Best-Fitting DDM for Each Subject

Parameter Mean SD Min Max

wSelf 0.006 0.002 0 0.0105

wOther 0.001 0.0026 �0.003 0.009

NDT 868 ms 241 ms 300 ms 1,300 ms

b 0.23 0.065 0.08 0.32

d 0.00046 0.00022 0 0.001

wSelf and wOther represent weights applied to the value of $Self and

$Other on each trial compared to the default. NDT, non-decision time.

b and d, starting value and collapse rate of the decision threshold.
lower barrier is symmetric, so thatBt = � Bt. Without loss of gen-

erality, we assume that s= 0:1, since the model is invariant to

affine transformations of the parameters (Ratcliff and McKoon,

2008). The model has five free parameters: NDT, wself , wother ,

b, and d.

Figure 1C illustrates the model. The relative value of the pro-

posal is given by V = wself ($Self � $50) + wother ($Other � $50).

When V is positive, the optimal choice is to accept the proposal

and otherwise to reject it. The decision problem is complicated

if V is measured with noise at every instant during the decision

phase, especially if the amount of noise is high. The DDM algo-

rithm provides an elegant solution to this problem: by dynami-

cally integrating the instantaneous noisy value measures, RDV

generates a posterior estimate of the log-likelihood ratio that

the optimal choice is to accept (Bogacz et al., 2006; Gold and

Shadlen, 2002). The barriers define a rule for how large this pos-

terior estimate has to become to make a decision. The barriers

collapse over time to allow choices to occur in a reasonable

timeframe even for trials with low RDV where the signal moves

away from zero very slowly.

Several aspects of the model are worth highlighting. First,

although choices and RTs are inherently stochastic, the model

makes quantitative predictions about how different parameters

and proposal amounts affect their distribution. Second, the size

of the weights wself and wother , as well as the barrier location, af-

fects the quality and speed of choices, a phenomenon known as

the speed-accuracy tradeoff (Bogacz et al., 2010). This implies

that mistakes are possible: individuals sometimes act selfishly

or altruistically despite their underlying preferences. When the

barriers are initially high and decay slowly (b large and d small),

decisions are slower but made more accurately. Finally, the rela-

tionship of wself to wother plays a critical role. If wself =wother , the

model predicts that $Self and $Other influence choices, RTs,

and errors symmetrically. In contrast, if wself>wother , changes in

$Self have a stronger impact on choices and RTs, and errors

are distributed asymmetrically, such that they more frequently

involve excessive generosity (more on this below).

The Model Accurately Predicts Out-of-Sample Choice
and RT
Weusedamaximum likelihoodmethodbasedon simulated likeli-

hood functions to estimate the best-fitting parameters of the

model in a randomly selected half of the data. We used these pa-

rameters to test the fit between model predictions and observed

data on the other half, separately for each subject (see Experi-
454 Neuron 87, 451–462, July 15, 2015 ª2015 Elsevier Inc.
mental Procedures for details). Model predictions capture inter-

individual differences in mean donations (mean Pearson’s r49 =

0.94, p < 0.0001) and RTs (r49 = 0.96, p < 0.0001) quite well

(Figures 2A and 2B). Themodel also captures intra-individual dif-

ferences in acceptance rates (mean r = 0.88, one-sample t50 =

45.05, p< 0.0001; Figure 2C) and inRTs (mean r = 0.53, one-sam-

ple t50 = 11.79, p < 0.0001; Figure 2D) across different trial types.

Although this suggests that the model described above fits

well, Figure 2C indicates that the fit for choice behavior (though

not RT) was poorer when the proposal involved a sacrifice for the

subject (i.e., $Self amounts below the default). To investigate this

issue, we fit a variant of the model that allows the parameters to

depend on whether $Self is more or less than $Other. This alter-

native model is motivated by previous behavioral work showing

that the value placed on $Self and $Other can depend on

whether the self is coming out ahead or behind (Charness and

Rabin, 2002; Engelmann and Strobel, 2004; Fehr and Schmidt,

1999). As detailed in the Supplemental Information, this analysis

improves the fit to observed choice behavior when $Self <

$Other, an effect that derives from a higher weight wself , a lower

weight wother , and a higher threshold parameter. However,

because there are no qualitative differences in the analyses re-

ported below when using themore complex model, for simplicity

the rest of the analyses utilize the simpler version.

Estimated Model Parameters in the Full Dataset
Having demonstrated that the model accurately predicts out-of-

sample choices and RTs, we next examine the best-fitting

parameter values using the full dataset (see Table 1). Several re-

sults are worth highlighting. First, the average NDT (868 ms) is

larger than that usually found for DDMs (Milosavljevic et al.,

2010; Ratcliff and McKoon, 2008). We attribute this to the addi-

tional time subjects may have needed to determine the payoffs

on each trial and translate that into a graded response. Second,

both wself and wother are significantly larger than zero on average

(both p < 0.003) and wself is considerably larger than wother

(paired-t50 = 10.83, p < 0.001) Third, we find substantial individual

variation in the best-fitting values for all five parameters, which is

useful for the individual difference analyses described below.

vmPFC Responses Encode an Integrated Value Signal at
Decision
The model suggests that an integrated value signal is used to

make choices. We provide neural evidence of such a signal by

estimating a general linear model to identify regions in which

BOLD responses correlate positively with the value assigned to

proposals at the time of decision, measured by the four-point

response scale (1 = Strong-No to 4 = Strong-Yes). Several re-

gions satisfy this property, including a region of vmPFC (p <

0.05, whole-brain corrected [WBC]; Figure 3A; Table S3) that en-

codes stimulus values at the time of decision in a wide range of

tasks (Clithero and Rangel, 2014; Kable and Glimcher, 2007).

Neural Representations of $Self and $Other
Our model assumes that the overall value assigned to the pro-

posal (and used by the DDM comparator algorithm to generate

a choice) is constructed from information about the independent

attributes $Self and $Other. We show that there are neural



Figure 3. Neural Correlates of the Model’s

Decision-Related Variables

(A–C) Neural responses vary parametrically with

behavioral preference at the time of choice (A);

$Self on each trial (B); and $Other on each trial (C).

(D) Conjunction of $Self and $Other in vmPFC.

Bar plot (mean ± SEM) shown for illustrative pur-

poses only. Activations displayed at p < 0.001,

uncorrected.
signals consistent with representation of these two quantities,

using a secondmodel to look for areas in which BOLD responses

correlate positively with either $Self or $Other separately (i.e., in-

puts to the integrated value signal), as well as regions that reflect

both (i.e., overall values).

$Self correlates with BOLD responses in a distributed set of re-

gions (Figure 3B; Table S4), including vmPFC (p < 0.05,WBC) and

the ventral striatum (p < 0.05, WBC). $Other correlates with BOLD

responses in a distinct and more circumscribed set of regions

(Figure 3C; Table S4), including right temporoparietal junction

(rTPJ), precuneus (both p < 0.05, WBC), and vmPFC (p = 0.004

SVC). To determine the specificity of these responses, we looked

for regions in which the effect for $Self is stronger than for $Other,

and vice versa. Regions responding more strongly to $Self

include the ventral striatum (p < 0.05, SVC), vmPFC, and areas

of visual and somatosensory cortex (p < 0.05, WBC). No regions

respond more strongly to $Other at our omnibus threshold,

althoughweobserve such specificity in the right TPJ at amore lib-

eral threshold (p < 0.005, uncorrected). A conjunction analysis

(Table S4) shows a region of vmPFC (Figure 3D) responding

significantly to both $Self and $Other (p < 0.05, SVC). This area

also overlaps fully the vmPFC area correlating with overall prefer-

ence, supporting the idea that it may represent an area where

separate attributes are combined into an integrated value signal.

Together, the behavioral and neural results are consistent with

the hypothesis that both $Self and $Other, quantities required by
Neuron 87, 451–
the computational model, are indepen-

dently represented in the brain. The re-

sults also support the idea that the

vmPFC combines information about

$Self and $Other into an overall value

and that choices are made by integrating

the proposal values using an algorithm

that is well captured by the DDM. These

results motivate the second part of the

paper, in which we use the best-fitting

computational model to derive and test

several implications of the theory.

Implication 1: RTs Are Longer for
Generous Choices, Particularly for
More Selfish Individuals
Our computational model has the advan-

tage that it provides a theory of the rela-

tionship between choices and RTs. This

is of particular interest because differ-

ences in RT when choosing to act self-
ishly or generously have been used in several studies to make

inferences about the relative automaticity of pro-social behavior

(Piovesan andWengstrom, 2009; Rand et al., 2012). Simulations

from the individual models reveal two interesting predictions.

First, in the domain of best-fitting parameters for our subjects,

the model predicts that on average RTs are longer for trials

that result in a generous (G) choice compared to trials resulting

in a selfish (S) choice (predicted RTG = 2,269, predicted RTS =

2,074, paired-t50 = 9.37, p < 0.0001; Figure 4A). Second, it pre-

dicts that this RT difference is bigger for more selfish subjects

(correlation between predicted generosity and difference in G

versus S RTs r49 = �0.89, p < 0.0001; Figure 4B). The observed

data displayed both patterns. On average, G choiceswere signif-

icantly slower than S choices (RTG = 2,300 ms ± 310, RTS =

2,131 ms ± 280, paired t43 = 4.97, p < 0.0001; Figure 4C), and

the more generous the individual, the smaller this difference

(r42 = �0.60, p < 0.001, Figure 4D).

Implication 2: Neural Response in Valuation and
Comparison Regions Is Higher for Generous Choices
Our computational model suggests a neural corollary of differ-

ences in RT: regions whose activity scales with computation in

the comparison process should have higher responses during G

compared toS choices (predicted comparator response, arbitrary

units: CompG = 69.68 ± 27.97, S choice = 65.76 ± 27.62, paired-

t50 = 6.43, p < 0.0001, see Experimental Procedures for details).
462, July 15, 2015 ª2015 Elsevier Inc. 455



Figure 4. Model Implications for RT Differ-

ences

(A) At the fitted parameters, the model predicts

generous (G) choices should take longer than

selfish (S) choices.

(B) The model predicts that overall generosity

correlates negatively with RT differences on G

versus S choices.

(C) Observed RTs for G and S choices.

(D) Observed relationship between average gen-

erosity andG versus S choice RT differences. Bars

show mean RT ± SEM. **p < 0.001.
To see why, note that the predicted area-under-the-curve of the

accumulator process is larger on longer trials and that inputs

into this process must also be sustained until the process termi-

nates at a decision barrier. This prediction is important, since

many studies of altruism have observed differential response dur-

ing pro-social choices in regions like the vmPFC and TPJ and in-

terpreted it as evidence that such choices are rewarding (Zaki and

Mitchell, 2011) or that they require the inhibition of selfish im-

pulses by the TPJ (Strombach et al., 2015). In contrast, our model

suggests that such differences could be a straightforward by-

product of the integration and comparison process.

To test this prediction, we first defined two independent ROIs

shown in previous research to have differential response during

G choices: (1) a value-modulated vmPFC region (Figure 5A) based

on the set of voxels that correlated significantly with stated prefer-

ence at the time of choice (p < 0.0001, uncorrected); and (2) a gen-

erosity-related TPJ region (Figure 5B) based on an 8-mm sphere

around the peak coordinates of a recent study reporting greater

activation in the TPJwhen subjects chose generously (Strombach

et al., 2015). In both regions, we replicate the pattern of higher

response on G versus S choices (both p < 0.02). Critically, how-

ever, we also find that differential BOLD on G versus S choices

correlates positively with predicted differences in accumulator

response inboth regions (both r42>0.46, p<0.001).Moreover, ac-

counting for predicted accumulator differences reduces to non-

significance the differential generosity-related response in both

vmPFC (p = 0.92) and TPJ (p = 0.91). In contrast, response in oc-

cipital and motor cortices (which show value modulation but are

unlikely to perform value integration and comparison) bear little

resemblance to predictions of the model (Figure S2).

Implication 3: Relationships betweenModel Parameters
and Generosity
In order to understand the impact on generosity of variation in the

different parameters, we simulate model predictions for our task
456 Neuron 87, 451–462, July 15, 2015 ª2015 Elsevier Inc.
for a wide range of parameter combina-

tions (see Experimental Procedures for

details). For each parameter combina-

tion, we calculate the average generosity

(i.e., the average amount of money given

to the other over all trials by choosing

generously). Then, we use multiple re-

gression to measure the independent in-

fluence of the five model parameters on

variation in average simulated generosity.
In the regression, all parameters are normalized by their mean

and standard deviation in order to assess their influence on a

common scale. As illustrated in Figures 6A–6B, we find the ex-

pected association between average generosity and both wSelf

(b = �4.86, p < 0.0001) and wOther (b = 9.26, p < 0.0001). Intrigu-

ingly, the simulations also reveal that a lower starting threshold

(b = �0.141, p = 0.0001), and a faster collapse rate (b = 0.21,

p < 0.0001) increase generosity. That is, individuals with less

stringent barriers tend, under the model, to make more G

choices, holding wSelf and wOther constant. Based on the results

below, we attribute this shift to an increase in choice errors for

individuals with less stringent decision criteria, leading to less

accurate (and in this case, generosity-prone) behavior. The

model predicts no relationship with NDTs (p = 0.79).

We use a similar regression to see whether the same relation is

evident in the observed data. As with the simulated data, the

fitted parameters were z scored to assess their influence on a

common scale. Consistent with model predictions, we find that

average observed generosity correlates negatively with wSelf

(b = �3.11 ± 0.28, p < 0.0001) and positively with wOther (b =

6.47 ± 0.29, p < 0.0001). Also as predicted, observed generosity

correlates negatively with the height of the decision threshold

(b = �1.51 ± 0.41, p = 0.0006) and positively with the rate at

which the threshold collapses toward zero (b = 1.08 ± 0.37, p =

0.006). The NDT parameter is non-significant, as expected.

Implication 4: Errors Are More Likely to Involve
Generous Choices
Because choices are stochastic, the model suggests that some

may be errors (i.e., a decision in which the option with the higher

relative value is not chosen; Bernheim and Rangel, 2005). We

use the simulated data to investigate how decision mistakes

change with variation in the model parameters, and how this af-

fects generosity. Multivariate regression analyses on the theoret-

ical data, where mistakes can be identified precisely on every



Figure 5. Model Implications for BOLD Response during Generous

versus Selfish Choices

Independently defined regions in value-related vmPFC (A) and generosity-

related TPJ (B) both show higher response (mean ± SEM) on generous choice

trials. (B) Individual variation in generous versus selfish choice BOLD response

is accounted for by model-predicted comparator differences in both regions.

*p = 0.02; **p = 0.008.
trial, show that error rates decrease with wSelf (b = �0.05, p <

0.0001) and wOther (b = �0.014, p < 0.0001) and increase with

more liberal barrier parameters for b (b = �0.04, p < 0.0001)

and d (b = 0.05, p < 0.0001). We also assess the relationship be-

tween model parameters and the relative percentage of trials

that result in generous errors (mistakenly choosing to give to

the other) versus selfish errors (mistakenly choosing to keep

more money). This assesses whether different parameters in-

crease generosity by increasing errors. As shown in Figure 6C,

wSelf (b = 0.026, p < 0.0001) and wOther (b = �0.047, p <

0.0001) influence the relative balance toward generous errors

in opposite ways. Increasing the height of the barrier decreases

the bias toward generous errors (b: b = �0.008, p < 0.0001; d:

b = +0.01, p < 0.0001; Figure 6D), while NDT has no effect (b =

�0.0001, p = 0.89).

We next use the individually fitted weights wSelf and wOther to

define the ‘‘true’’ relative value of each proposal, which allows

us to estimate the proportion of observed G and S choices for

each subject that might reasonably be assumed to be errors.

This analysis suggests that G choices were significantly more

likely to be errors (M = 49% ± 38%) than S choices (M =

10% ± 21%, paired-t50 = 5.45, p < 0.0001).

We carry out a further test of this prediction, using outcome

period BOLD responses, based on the following logic. The
model suggests that a proposal’s true value should become

increasingly clear to the decision circuitry as the amount of

accumulated evidence increases over time, because random

fluctuations in the signal will tend to cancel out. If subjects

continue to accumulate evidence about the proposal even after

making a choice (i.e., ‘‘double checking’’ whether they have

made an error), then these signals should be quite clean by

the time the subject sees the outcome of his choice. If this

increased clarity leads a subject to realize at some point after

making his choice that it was a mistake, having that mistake

overturned during the outcome period (yielding the unchosen

but ultimately preferred option) should be perceived as ‘‘good

news’’ (i.e., relief), whereas having it implemented should be

experienced as ‘‘bad news’’ (i.e., disappointment). If the original

choice is actually correct, then reversal of this choice should

be perceived negatively. The model thus predicts that reversal

of S choices (which simulations suggest are generally likely

to be correct) should be associated with negative affect and

lower response in brain regions coding for the utility of an

outcome, relative to non-reversal. In contrast, because G

choices more likely reflect choice errors, reversing them should

be more likely to evoke positive affect and greater neural

response compared to implementation. Finally, the response

in utility-coding areas to reversing a G choice should increase,

across subjects, with the model-estimated likelihood that G

choices are mistakes.

We tested these predictions by computing the difference be-

tween response in the vmPFC to reversal versus implementa-

tion of G or S choices, controlling both for the strength of pref-

erence at the time of decision, and for actual outcomes

received (i.e., the amounts $Self and $Other resulting from

choice combined with the random implementation, see GLM

1 in Experimental Procedures for details). Consistent with pre-

dictions, vmPFC response to reversal versus implementation

was significantly higher after G compared to S choices (p =

0.02, SVC, Figure 7A). Also as predicted by the model, the dif-

ference in response in this region correlated positively with the

estimated excess rate of mistakes for G over S choices (r39 =

0.43, p = 0.004, Figure 7B).

DISCUSSION

We have proposed a neurocomputational model of altruistic

choice that builds on behavioral, neural, and computational

work in non-social domains (Basten et al., 2010; Bogacz et al.,

2010; Hare et al., 2011; Heekeren et al., 2008; Ratcliff and

McKoon, 2008). In the model, decisions result from the stochas-

tic accumulation of a relative value signal that linearly weights in-

formation about payoffs for self and other. Despite its simplicity,

the model has considerable explanatory power. It accounts for

differences in average levels of altruism and RTs within and

across subjects, as well as for neural signals encoded in vmPFC,

TPJ, and striatum at the time of choice. Our results provide

insight into the common processes at work in altruistic choice

and simple non-social decisions, shed light on some of the neu-

ral mechanisms specifically involved in the computation of social

value, and provide novel insights into the nature of altruistic

behavior.
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Figure 6. Model Implications for Relation

between Different Parameters of the Model

and Behavior

(A and B) Variation in generosity as weights for self

and other vary (A) and as threshold starting height

and collapse rate vary (B).

(C and D) Variation in likelihood that a generous

choice is a mistake as a function of weights for self

and other (C) and threshold parameters (D). Dots

represent the estimated parameter values for the

51 subjects who completed the fMRI study, jit-

tered randomly by a small amount to allow visu-

alization of subjects with overlapping values.
Simple versus Social Decision Making
A growing body of work suggests that in simple non-social

choices the vmPFC receives information from regions computing

informationaboutdifferent stimulusattributes (Bastenet al., 2010;

Hare et al., 2009; Kable and Glimcher, 2007; Lim et al., 2013) and

combines it intoa relative value signal (Hare et al., 2009;Kable and

Glimcher, 2007). This signal is then dynamically integrated in

comparator regions using algorithms with properties similar to

the DDM (Basten et al., 2010; Hare et al., 2011; Hunt et al.,

2012). BOLD responses in our study suggest a similar neural ar-

chitecture for social choice:weobservedattribute-coding regions

like the striatum and TPJ (which correlatedwith $Self and $Other,

respectively), as well as a vmPFC region that represented $Self

and $Other simultaneously and encoded the overall value of a

choice.

Neural and Psychological Bases of Pro-social Decision
Making
Although several studies have shown that the TPJ plays a role in

empathic and altruistic decision making (Decety and Jackson,

2006; Hare et al., 2010; Morishima et al., 2012; Saxe and Powell,

2006), its precise computational nature remains poorly under-

stood. Our findings show that, at least during altruistic choice,

signals in this area may reflect computations related to others’

interests. This signal differs from two popular alternative ac-

counts of TPJ function: that it represents the beliefs of others

(Saxe and Powell, 2006) or that it allows attention to be shifted

away from the self (Scholz et al., 2009). Neither theory appears

to fully explain the pattern of TPJ response in our task. Although

computations about belief might be used to determine how

another person would value the proposal, it is not clear why

this representation would appear selectively for higher rather

than lower amounts of $Other. Similarly, if attentional shifts

help to incorporate others’ reward into the value signal, they
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should be equally important for both

gains and losses (relative to the default).

This predicts a correlation with the abso-

lute value of $Other versus the default,

rather than the positive linear response

observed here. Tasks observing belief

representation or attentional reorienting

in TPJ typically examine these processes

in an evaluation-free context. We specu-

late that the explicit use of attention or
belief representations to construct value representations may

produce the pattern of results here. Future work will be needed

to determine whether such differences can help to integrate

the current findings with previous literature.

The specific processes tapped by our task may also explain

why we do not find other areas often implicated in prosociality,

such as the anterior insula. While this region contributes to a va-

riety of cognitive and affective functions (Kurth et al., 2010),

studies implicating insula in social decision making typically

involve a strong component of negative affect, such as the pain

and suffering of a victim (Singer, 2006; Singer et al., 2004). These

considerations may play a more limited role in our task, which

likely involvesmore abstract representation of costs and benefits.

Exploring how different task features influence the specific neural

and psychological processes deployed during altruistic decisions

represents an important avenue for research.

Model Implications
Several implications of the model showcase the value of compu-

tational approaches and provide novel insights into the nature of

pro-social behavior. First, consistent with the data, model simu-

lations predict that generous decisions are made more slowly

but that this slowdown is less pronounced in more generous

subjects. This observation has direct relevance for a literature

that has made the case for dual-process models of social deci-

sion making based on RT differences between generous and

selfish choices (Piovesan and Wengstrom, 2009; Rand et al.,

2012; Tinghög et al., 2013). Our results suggest caution in inter-

preting these RT differences, by showing how they can arise

without requiring competition between ‘‘fast and automatic’’

and ‘‘slow and deliberative’’ systems. In our model, generous

choices are made more slowly if the relative weight placed on

the self is higher, but more quickly if weights on others’ payoffs

are higher.



Figure 7. Model Implications for the Likelihood that Selfish or

Generous Choices Are Errors

(A) A vmPFC region implicated in coding outcome value responded more

positively to reversal versus receipt of generous (G) choices compared to

selfish (S) choices (p < 0.05, SVC). Differential BOLD response in this region

(mean ± SEM) is shown for illustrative purposes only.

(B) vmPFC response to reversal versus receipt of G versus S choices corre-

lated with the DDM-predicted likelihood that a subject’s G choices were more

likely to be errors than S choices (i.e., indexing the relief they should feel if

those choices are overturned).
This could help to reconcile some of the apparently contradic-

tory results in this literature. Different contexts can evoke

dramatically different levels of altruistic or pro-social behavior

(Engel, 2011). Studies observing faster RTs for more generous

or cooperative choices (Rand et al., 2012) may establish con-

texts in which, for a variety of reasons, the needs of others are

weighted more highly, while studies observing slower RTs (Pio-

vesan and Wengstrom, 2009) may prime subjects toward

reduced consideration of others. Note, however, that our results

do not undermine the general validity of dual-process frame-

works. Indeed, in some respects, our model can be interpreted

as involving dual processes with respect to valuing self- and

other-interests but suggests that RT data should be used care-

fully and in conjunction with more formal computational models

to derive and test predictions.

Second, the model has similar implications for the interpreta-

tion of neural response. It predicts that for subjects with a bias

toward the self (i.e., almost everyone), brain areas whose activity

scales with computations in the accumulation and comparison

process will have greater response on trials resulting in generous

choice. We find this pattern in both the TPJ and vmPFC and

show that it can be accounted for by the neurocomputational

model. These results urge caution in interpreting generosity-spe-

cific activation in TPJ as inhibition of selfish impulses (Strombach

et al., 2015) or in concluding from activation differences in

vmPFC that choosing generously is rewarding (Strombach

et al., 2015; Zaki and Mitchell, 2011). A simple neurocomputa-

tional model with identical parameters on every trial reproduces

these differences without requiring that choosing generously

specifically involve either self-control or a special reward value.

A third implication of the model concerns the relationship be-

tween individual differences in generosity and specificmodel pa-

rameters. Not surprisingly, generosity increases with the weight
to other and decreases with the weight to self. More surprisingly,

generosity also increases with less stringent barriers (i.e., lower

starting threshold and a faster collapse rate). Thus, systematic

differences in altruistic behavior may not reflect different under-

lying preferences (i.e., weights on self and other), but simply al-

terations in the amount of noise in the decision process. This

observation has important implications for the large body of so-

cial decision making literature that has used manipulations that

might influence barrier height and response caution, such as

time pressure (Rand et al., 2012), cognitive load (Cornelissen

et al., 2011), or even electrical brain stimulation (Ruff et al.,

2013). The results of these studies are often assumed to support

a role of self-control in increasing (or decreasing) consideration

of others’ welfare. Our results point to an alternative interpreta-

tion and suggest that greater attention should be paid to the pre-

cise mechanism of action through which different manipulations

influence generosity.

The observation that noise can induce systematic shifts in

choice without systematic shifts in preferences leads to the

final implication of our model: that a significant fraction of

generous choices may be decision mistakes. Results from

the outcome period in our study suggest that people track

these errors and may feel relieved when the consequences of

such errors are avoided due to external contingencies. This

insight has profound implications for our understanding of

both basic decision making and pro-sociality. It adds to other

work on impure altruism (Andreoni, 1990; Andreoni and Bern-

heim, 2009), suggesting that any single generous act can result

from many processes that have little to do with the true value

we assign to others’ welfare.

EXPERIMENTAL PROCEDURES

Participants

Male volunteers (n = 122) were recruited in pairs from the Caltech community.

Half were active participants who completed the scanning task. The other

subjects participated passively as described below. All were right-handed,

healthy, had normal/corrected-to-normal vision, were free of psychiatric/

neurological conditions, and did not report taking any medications that might

interfere with fMRI. All participants received a show-up fee of $30 as well as

$0–$100 in additional earnings, depending on the outcome of a randomly cho-

sen experimental trial. We excluded data from ten scanning subjects due to

excessive head motion or technical difficulties during scanning (remaining

51 subjects: 18–35 years of age, mean 22.3). Caltech’s Internal Review Board

approved all procedures. Subjects provided informed consent prior to

participation.

Task

Each participant in a pair arrived separately to the lab and waited in a private

area where he received instructions. We randomly designated one participant

as the active participant (AP), who completed the tasks described below. We

designated the other as the passive partner (PP) who, after receiving instruc-

tions, waited in a separate room for the study duration. The PP’s presence

created a real and non-deceptive social context for the AP.

The AP made 180 real decisions in a modified Dictator Game. On each trial,

he chose between a proposed pair of monetary prizes to himself and his part-

ner and a constant default prize-pair of $50 to both (Figure 1A). Proposed pri-

zes varied from $10 to $100 and were drawn from one of the nine pairs shown

in Figure 1B. Each pair appeared 20 times, randomly intermixed across trials,

and divided evenly across four scanner runs (five instances/run). To minimize

habituation and repetition effects, we randomly jittered proposal amounts by

$1–$4, with the exception that amounts above $100 were always jittered
Neuron 87, 451–462, July 15, 2015 ª2015 Elsevier Inc. 459



downward. The side of the screen on which $Self appeared was counterbal-

anced across subjects but was constant throughout the task.

All prize-pairs included one payment below and one payment above the

default and thus involved a choice between generous behavior (benefitting

the other at a cost to oneself) and selfish behavior (benefitting oneself at a

cost to the other). After presentation of the proposal, subjects had up to 4 s

to indicate their choice using a four-point scale (Strong No, No, Yes, Strong

Yes). This allowed us to simultaneously measure both their decision and the

relative value of the proposed payment at the time of choice. The direction

of increasing preference (right-to-left or left-to-right) varied on each scan. If

the subject failed to respond within 4 s, both individuals received $0 for that

trial. Although this time limit could be considered a form of time pressure, pilot

testing with free response times suggested that a relative minority of choices

(14%) took longer than 4 s and that other basic properties of choice and RT

were similar to the current study.

The task also included a second component designed both to increase the

anonymity of choices and allow us to test a prediction made by the DDM about

the possibility of decision mistakes. After a random delay of 2–4 s following

response, the subject’s choice was implemented probabilistically: in 60% of

trials he received his chosen option, while in 40% his choice was reversed

and he received the alternative non-chosen option. This reversal meant that

while it was always in his best interest to choose according to his true prefer-

ences, his partner could never be sure about the actual choicemade. APswere

informed that the PPs were aware of the probabilistic implementation. The

40% reversal rate was necessary to test key predictions of the model but rai-

ses the concern that it alters decision computations. Pilot testing with only

10% choice reversals yielded nearly identical behavioral results, suggesting

this is not likely an issue.

Behavioral Definition of Generosity

We label specific decisions as Generous (G) if the AP gave up money to help

the PP (i.e., accepting $Self < $50 or rejecting $Self > $50) and as Selfish (S)

otherwise. Subject-level generosity was measured by the average amount of

money per trial that a subject gave to the PP by choosing generously. Alterna-

tive measures of generosity (such as money sacrificed) led to similar results.

Model Estimation

We use maximum likelihood to estimate the value of the free parameters that

provide the best fit to the observed choice and RT data, separately for each

AP. For assessing the goodness-of-fit of the model, we estimate these param-

eters separately for half of the trials and test the accuracy of predictions in the

other half of the data. For testing model implications, we use the full set of trials

for each AP to fit the parameters. Fitting was done in several steps.

First, we ran 1,000 simulations of the DDM to compute the likelihood func-

tion over observed choices (Yes/No) and RT bins separately for each proposal

pair used in the experiment and each possible combination of parameters. RT

bins were specified in 250-ms increments from 0 to 4 s and included one addi-

tional bin for non-responses (simulations in which the RDV failed to cross a

barrier within the 4 s time limit). The combination of parameters used covers

a grid determined by the cross-product of the following sets: wSelf = wOther =

[�0.045, �0.003, �0.0015, 0, 0.0015, 0.0003, 0.0045, 0.006, 0.0075, 0.009,

0.0105, 0.012, 0.0135], NDT = [0.3, 0.5, 0.7, 0.9, 1.1, 1.3], B = [0.04, 0.06,

0.08, 0.1, 0.12, 0.14, 0.16, 0.18, 0.2, 0.22, 0.24, 0.26, 0.28, 0.3, 0.32], and

b = [0, 0.00005, 0.0001, 0.00025, 0.0005, 0.00075, 0.001, 0.005]. The range

of the grid was chosen by trial and error so that no more than 10% of subjects

fell on a boundary edge for any parameter, while keeping the total number of

parameter combinations low to minimize exploding computational costs.

Second, for each subject we identified the parameter combination that mini-

mized the negative log-likelihood (NLL) of the selected trials observed for that

subject, based on likelihoods generated from the simulated data. If more than

one parameter combination resulted in the same minimal NLL, one was

randomly selected as the solution.

Model Simulations

To assess model fits to behavior, we used half of each subject’s responses

(randomly selected) to find the best-fitting parameters and simulated 1,000

runs of the other half of trials seen by that individual. We then compared
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observed and simulated values for the average amount given to the partner,

average RT on G and S choice trials, and average choices and RTs for partic-

ular proposals.

We also simulated data from the best-fitting parameters for all trials in each

subject, to explore other model implications. First, we predicted overall

response in the accumulator (Implication 2 and Figure 6). We speculated

based on prior research (Basten et al., 2010) that several brain regions may

contribute to this computation and explored the implications of this architec-

ture for understanding behavioral and neural correlates of generosity. We

follow Basten et al. (2010) in defining accumulator response for each trial as

St jRDVtj and estimate it separately for G and S choices (see GLM 3 below).

Second, we explored how individual variation in model parameters affects

generosity (Implication 3). Finally, we used simulations to understand the

role of choice errors in producing altruistic behavior (Implication 4 and

Figure 7).

fMRI

fMRI data were acquired and preprocessed using standard procedures (see

Supplemental Experimental Procedures for details). Using these data, we esti-

mated three different general linear models (GLMs) of BOLD response.

GLM 1

The first GLM served two purposes: (1) to identify regions associated with the

overall decision value of the proposal behaviorally expressed at the time of

choice, and (2) to test the hypothesis that many generous choices should be

considered errors and thus be perceived as good news if they are reversed.

For each subject, we estimated a GLM with AR(1) and the following regres-

sors of interest: (R1) a boxcar function for the choice period on all trials; (R2) R1

modulated by the behaviorally expressed preference, ranging from 1 = Strong

No to 4 = Strong Yes; (R3) a boxcar function of 3 s duration for the outcome

period; (R4) R3 modulated by the outcome for self on each trial; (R5) R3 modu-

lated by the outcome for other on each trial; (R6) R3 modulated by a variable

consisting of a 1 for every trial in which the subject chose generously but the

choice was vetoed, a �1 for every trial in which the subject chose generously

and the choice was implemented, and 0 otherwise (i.e., after a selfish choice);

and (R7) R3 modulated by a variable similar to R6, but which was 1 for veto of

selfish choices, �1 for implementation of selfish choices, and 0 otherwise. No

orthogonalization was used, allowing regressors to compete fully for explained

variance. All regressors of interest were convolved with the canonical form of

the hemodynamic response. The model also included motion parameters and

session constants as regressors of no interest. Missed response trials were

excluded from analysis.

We then computed second-level random effects contrasts with one-sample

t tests, using the single-subject parameter estimates to construct several con-

trasts. We used R2 to determine areas correlated with behaviorally expressed

preference at the time of choice. We used R6 and R7, and their difference, to

explore activation related to choice reversal. Because outcomes for self and

other are entered as modulators, R6 and R7 reflect differences in response

over and above those associated purely with the amounts received when

the outcome is revealed.

For inference purposes, we imposed a family-wise error cluster-corrected

threshold of p < 0.05 (based on Gaussian random field theory as implemented

in SPM5). We also report results surviving small-volume correction within re-

gions for which we had strong a priori hypotheses (see ROI definition below),

including vmPFC and TPJ.

GLM 2

This GLM identified regions in which activity correlates with proposed pay-

ments at the time of choice. It included the following regressors: (R1) a boxcar

function for the choice period on all trials; (R2) R1 modulated by $Self on each

trial; (R3) R1 modulated by $Other on each trial; (R4) a 3 s boxcar function for

the outcome period; (R5) R4 modulated by the outcome for self on each trial;

and (R6) R4 modulated by the outcome for other on each trial. All other details

are as in GLM 1. Using GLM 2, we calculated three single-subject parametric

contrasts: R2 versus zero, R3 versus zero, and R2 versus R3.

GLM 3

We used GLM 3 to test predictions about comparator differences on G versus

S choice trials. It included the following regressors: (R1) a boxcar function for

the choice period on trials when the subject chose selfishly; (R2) R1modulated



by the behaviorally expressed preference at the time of choice; (R3) a boxcar

function for the choice period on trials when the subject chose generously; and

(R4) R3 modulated by behavioral preference. R5–R9 were identical to R3–R7

from GLM 1. The contrast R3 versus R1 identified regions with differential

response for G versus S choices.

Within two independently defined ROIs in vmPFC and TPJ (see Figure 5),

we calculated the average value of the contrast R3 – R1 for each subject

and regressed it on the model-predicted difference in accumulator activity

(BOLDG – S = b0 + b1*DDMG – S). This allowed us to determine whether pre-

dicted accumulator differences were associated with BOLD differences on

G versus S choice trials, and whether differential generosity-related BOLD

response (i.e., b0) remained significant after controlling for predicted accumu-

lator differences.

ROI Definition

For use in small-volume corrections, as implemented in SPM5, we defined

three a priori regions of interest: a vmPFC region associated with decision

value, a vmPFC region associated outcome value, and bilateral TPJ. We

defined decision value-related vmPFC using the conjunction of two recent

meta-analyses on decision-related reward valuation (Bartra et al., 2013; Cli-

thero and Rangel, 2014). Outcome value-related vmPFC was defined in a

similar way but based on meta-analysis results for value representations at

outcome, which may preferentially activate more anterior vmPFC regions (Cli-

thero and Rangel, 2014). The TPJ mask was defined anatomically using the

WFU PickAtlas (http://fmri.wfubmc.edu/software/PickAtlas), with a dilation

of 3 mm to ensure full coverage of the area. It included bilateral angular and

superior temporal gyrus, posterior to y = �40 (1,975 voxels), a region encom-

passing activation peaks from several studies of Theory-of-Mind (Decety and

Jackson, 2006; Saxe and Powell, 2006). All masks can be obtained from http://

www.rnl.caltech.edu/resources/index.html.
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Peters, J., and Büchel, C. (2011). The neural mechanisms of inter-temporal de-

cision-making: understanding variability. Trends Cogn. Sci. 15, 227–239.

Piovesan, M., and Wengstrom, E. (2009). Fast or fair? A study of response

times. Econ. Lett. 105, 193–196.

Rand, D.G., Greene, J.D., and Nowak, M.A. (2012). Spontaneous giving and

calculated greed. Nature 489, 427–430.

Rangel, A., and Clithero, J. (2013). The computation of stimulus values in sim-

ple choice. In Neuroeconomics: Decision Making and the Brain, P.W.

Glimcher, ed. (Academic Press), pp. 125–147.

Ratcliff, R., and McKoon, G. (2008). The diffusion decision model: theory and

data for two-choice decision tasks. Neural Comput. 20, 873–922.

Rodriguez, C.A., Turner, B.M., and McClure, S.M. (2014). Intertemporal choice

as discounted value accumulation. PLoS ONE 9, e90138.

Ruff, C.C., Ugazio, G., and Fehr, E. (2013). Changing social norm compliance

with noninvasive brain stimulation. Science 342, 482–484.

Saxe, R., and Powell, L.J. (2006). It’s the thought that counts: specific brain re-

gions for one component of theory of mind. Psychol. Sci. 17, 692–699.

Scholz, J., Triantafyllou, C., Whitfield-Gabrieli, S., Brown, E.N., and Saxe, R.

(2009). Distinct regions of right temporo-parietal junction are selective for the-

ory of mind and exogenous attention. PLoS ONE 4, e4869.

Singer, T. (2006). The neuronal basis and ontogeny of empathy and mind

reading: review of literature and implications for future research. Neurosci.

Biobehav. Rev. 30, 855–863.

Singer, T., Seymour, B., O’Doherty, J., Kaube, H., Dolan, R.J., and Frith, C.D.

(2004). Empathy for pain involves the affective but not sensory components of

pain. Science 303, 1157–1162.

Smith, P.L., and Ratcliff, R. (2004). Psychology and neurobiology of simple de-

cisions. Trends Neurosci. 27, 161–168.

Strombach, T., Weber, B., Hangebrauk, Z., Kenning, P., Karipidis, I.I., Tobler,

P.N., and Kalenscher, T. (2015). Social discounting involves modulation of

neural value signals by temporoparietal junction. Proc. Natl. Acad. Sci. USA

112, 1619–1624.
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