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Learning to make choices that yield rewarding outcomes requires the computation of three distinct signals: stimulus values that
are used to guide choices at the time of decision making, experienced utility signals that are used to evaluate the outcomes
of those decisions and prediction errors that are used to update the values assigned to stimuli during reward learning. Here
we investigated whether monetary and social rewards involve overlapping neural substrates during these computations. Subjects
engaged in two probabilistic reward learning tasks that were identical except that rewards were either social (pictures of smiling
or angry people) or monetary (gaining or losing money). We found substantial overlap between the two types of rewards for all
components of the learning process: a common area of ventromedial prefrontal cortex (vmPFC) correlated with stimulus value at
the time of choice and another common area of vmPFC correlated with reward magnitude and common areas in the striatum
correlated with prediction errors. Taken together, the findings support the hypothesis that shared anatomical substrates are
involved in the computation of both monetary and social rewards.
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INTRODUCTION
The brain needs to compute several distinct signals in order

for an organism to learn how to make sound decisions

among alternatives. First, at the time of choice, values need

to be assigned to the different stimuli associated with each

choice option [which we refer to as stimulus values (SV)];

these are subsequently compared in order to choose the

option with the highest value (Wallis, 2007; Rangel et al.,

2008; Kable and Glimcher, 2009; Rushworth et al., 2009;

Rangel and Hare, 2010). Stimulus value signals have been

found in ventral and medial sectors of the prefrontal

cortex (vmPFC) in several human fMRI (Kable and

Glimcher, 2007; Plassmann et al., 2007; Tom et al., 2007;

Hare et al., 2008, 2009; Chib et al., 2009; FitzGerald et al.,

2009; Litt et al., 2009; Levy et al., 2010; Plassmann et al.,

2010) and non-human primate electrophysiological studies

(Wallis and Miller, 2003; Padoa-Schioppa and Assad, 2006,

2008; Kennerley et al., 2009; Kennerley and Wallis, 2009;

Padoa-Schioppa, 2009) during choices involving non-social

rewards, as well as during social decisions such as donations

to charities (Hare et al., 2010).

Having made a choice, the brain needs to compute the

reward value associated with the outcomes generated by the

choice. These signals are often called reward magnitude or

experienced utility (R). Several human fMRI studies have

found that activity in medial regions of orbitofrontal

cortex (OFC) correlates with behavioral measures of experi-

enced utility for a wide variety of social and non-social

reward modalities (Blood and Zatorre, 2001; Small et al.,

2001, 2003; de Araujo et al., 2003; McClure et al., 2003;

Kringelbach, 2005; Plassmann et al., 2008; Smith et al.,

2010).

A third critical component is the combination of the pre-

vious two signals into a prediction-error signal (PE) that is

used to update stimulus values (Schultz et al., 1997). The key

involvement of the ventral striatum in this third component

is borne out by a sizable and rapidly growing body of human

fMRI studies of reinforcement learning that have used

almost exclusively non-social rewards such as monetary pay-

ments (Delgado et al., 2000; Berns et al., 2001; Pagnoni et al.,

2002; O’Doherty et al., 2003b, 2004; Pessiglione et al., 2006;

Yacubian et al., 2006; Seymour et al., 2007; Hare et al., 2008).

Although the findings summarized above have been repli-

cated across species, techniques and experimental designs,

the vast majority of studies have used only non-social re-

wards such as juice, food or money, and only a handful have

directly compared social and non-social rewards. This raises

a fundamental question: do the same brain regions imple-

ment reward-learning computations for social and

non-social rewards? Or might the areas that encode SV, PE

and R be different for social rewards, analogously to the

specialized perceptual processing of social stimuli

(Kanwisher and Yovel, 2006)? While a very few other studies

have recently approached this issue (Izuma et al., 2008;

Zink et al., 2008; Smith et al., 2010), no study to date has

investigated the question using identical tasks across the

same subjects, and in a task that allows us to compare the
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encoding of the three types of basic reward signals defined

above. We undertook such an investigation here using

model-based fMRI.

METHODS
Participants
Twenty-seven female participants from the Caltech commu-

nity participated in the study (mean age¼ 22.4 years; range

18–28). Five were excluded from further analyses: four due

to excessive head movement, one due to failure to under-

stand task instructions. All participants were fully

right-handed, had normal or corrected-to-normal vision,

had no history of psychiatric or neurological disease and

were not taking medications that might have interfered

with BOLD-fMRI. All gave informed consent under a proto-

col approved by the Caltech IRB.

TASK
Participants played two structurally identical versions of an

instrumental learning task, one with monetary rewards, the

second with social rewards (Figure 1A). A trial began with

the display of two visually distinctive slot machines, each

associated with one of three outcome distributions: mean-

positive, -negative and -neutral (Figure 1B).

All participants completed one social and one monetary

block of 148 trials each; block order was randomized be-

tween participants. There were two types of trials in each

block. In 100 choice trials the neutral slot machine was

shown paired with either the positive or negative slot ma-

chine (50/50 probability with randomized order), and par-

ticipants chose one by pressing a left or right button. We

refer to these as free choice trials. In 48 non-choice trials two

identical copies of one of the three slot machines were shown

(1/3, 1/3, 1/3 probability with randomized order), and par-

ticipants merely pressed either the left or right button in

order to advance the trial. We refer to these as forced

choice trials. Up to 2.5 s were allowed for choice in both

cases, followed by a uniformly blank screen displayed for

1–5 s (flat distribution), followed by the reward outcome

displayed for 1.5 s, followed by an intertrial interval of a

uniformly blank screen displayed for 1–6 s (flat distribution).

Note that participants were not told the reward probabilities

associated with each slot machine and had to learn them by

trial and error during the task.

The forced trials provide an essential control for a poten-

tial important confound in the study. One potential concern

is that the presentation of positive and aversive social out-

comes might induce in the brain ‘correct’ and ‘error’ feed-

back signals at outcome during the social trials. This is a

problem because this would suggest that the common

locus of activity is not due to the activation of a social

reward, but to the activation of these error feedback signals.

The forced trials provide a control for this concern because

when there is no free choice, there can be no error feedback

regarding the correctness of the choice.

Stimuli and rewards
The slot machines in both conditions were represented by

cartoon images of actual slot machines that varied in color

and pattern (Figure 1). In the social condition, reward out-

comes were color photographs of unfamiliar faces from the

NimStim collection (Tottenham et al., 2009) showing either

an angry (negative outcome), neutral (neutral outcome)

or happy (positive outcome) emotional expression, pre-

sented together with emotionally matched words played

through headphones (normalized for volume and duration).

Examples of positive words are excellent, bravo and

fantastic. Examples of negative words are stupid, moron

and wrong. Examples of neutral words are desk, paper and

stapler. Extensive prior piloting had demonstrated the

behavioral efficacy of these stimuli in reward learning.

In the monetary condition, the positive outcome was a

gain of one dollar (an image of a dollar bill), the negative

condition was a loss of one dollar (image of a dollar bill

crossed out) and the neutral condition involved no change

in monetary payoff (image of an empty rectangle). Subjects

were paid out the sum of their earnings at the end of the

experiment.

Computational model
We computed trial- and subject-specific values for each of

the three variables described in the Introduction. The SV for

every slot machine was calculated as the 10-trial moving

average proportion of times that the machine was chosen

when it was shown, a continuous value between 0–1.

Consistent with this coding, R were assigned a value of 1 if

they were positive; a value of 0.5 if they were neutral and a

value of 0 if they were negative. PE at the time of outcome

were calculated using a simple Rescorla–Wagner learning

rule (Rescorla and Wagner, 1972) as the difference between

the value of the reward outcome and the stimulus value of

the machine selected for that trial: PEt¼Rt – SVt.

Note three things about the value normalizations. First,

our approach deviates from the usual practice in neurosci-

ence studies of reinforcement learning (Pessiglione et al.,

2006, 2008; Seymour et al., 2007; Lohrenz et al., 2007;

Hare et al., 2008; Wunderlich et al., 2009) in which it is

customary to fit the values of the SV signal based on the

predictions of the best fitting learning model. Here we depart

from that practice because the revealed preference approach

provides more accurate measures of the values computed at

the time of choice (as shown in Figure 1D). Second, without

loss of generality we normalize the reward outcome signals

to 0 for negative outcomes and 1 for positive outcomes. Note

that given the parametric nature of the general linear model

specified below, this normalization does not affect the iden-

tification of areas that exhibit significant correlation with

this variable. Third, we use the standard definition of

prediction errors used in the literature.
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Image acquisition
T2*-weighted gradient-echo echo-planar (EPI) images with

BOLD contrast were collected on a Siemens 3T Trio. To

optimize signal in the OFC, we acquired slices in an oblique

orientation of 30o to the anterior commissure–posterior

commissure line (Deichmann et al., 2003) and used an

eight-channel phased array head coil. Each volume com-

prised 32 slices. Data was collected in four sessions

(� 12 min each). The imaging parameters were as follows:

TR¼ 2 s, TE¼ 30 ms, FOV¼ 192 mm, 32 slices with 3 mm

thickness resulting in isotropic 3 mm voxels. Whole-

brain high-resolution T1-weighted structural scans

(1� 1� 1 mm) were co-registered with their mean T2*-

weighted images and averaged together to permit anatomical

localization of the functional activations at the group level.

fMRI pre-processing
The imaging data was analyzed using SPM5 (Wellcome

Department of Imaging Neuroscience, Institute of

Neurology, London, UK). Functional images were corrected

Fig. 1 Task and behavioral results. (A) Timeline of the monetary and social reward trials. Choice trials paired a neutral slot machine with a valenced slot machine. Trials were
identical except for the nature of the outcomes: monetary trials had a gain/loss of þ$1, 0$ or �$1, whereas social trials revealed happy, neutral or angry faces accompanied
with sound effects of similar emotional valence. The experiment also included no-choice trials (in which a pair of identical slot machines were shown: neutral, negative or
positive) to help separate the learning and stimulus value signals. Specific slot machines were randomly assigned to specific reward outcomes at the start of the experiment for
each subject, and distinct between monetary and social condition blocks. (B) Distribution of outcomes for each slot machine. First row: negative machine. Second row: positive
machine. Bottom row: neutral machine. The same distribution was used in the monetary and social conditions. Actual appearance of the slot machines was randomly paired with
a reward outcome distribution and distinct between monetary and social condition blocks. (C) Plot of group subject choices across trials (only the first 30 are shown).
(D) Psychometric choice curve for monetary and social conditions. Bars denote standard error measures computed across subjects.
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for slice acquisition time within each volume, motion-

corrected with realignment to the last volume, spatially

normalized to the standard Montreal Neurological Institute

EPI template and spatially smoothed using a Gaussian ker-

nel with a full-width at half-maximum of 8 mm. Intensity

normalization and high-pass temporal filtering (filter

width¼ 128 s) were also applied to the data.

fMRI data analysis
The data analysis proceeded in three steps. First, we esti-

mated a general linear model with AR(1). This model was

designed to identify regions in which BOLD activity was

parametrically related to SV, R and PE. The model included

the following regressors:

(R1) An indicator function for the decision screen in free

choice monetary trials.

(R2) An indicator function for the decision screen in free

choice monetary trials multiplied by the SV of the two slot

machines shown in that trial (summed SV).

(R3) An indicator function for the decision screen in free

choice monetary trials multiplied by the reaction time for

that trial.

(R4–R6) Analogous indicator functions for decision screen

events in free choice social trials.

(R7) An indicator function for the decision screen in forced

monetary trials.

(R8) An indicator function for the decision screen in forced

monetary trials multiplied by the SV of the slot machine

displayed.

(R9–R10) Analogous indicator functions for decision screen

events in forced social trials.

(R11) A delta function for the time of response in the mon-

etary condition.

(R12) A delta function for the time of response in the social

condition.

(R13) An indicator function for the outcome screen in free

monetary trials (both choice and non-choice).

(R14) An indicator function for the outcome screen in free

monetary trials multiplied by the PE for the trial.

(R15) An indicator function for the outcome screen in free

monetary trials multiplied by the R for the trial.

(R16–R18) Analogous indicator functions for outcome

screen events in free social trials (both choice and

non-choice).

We orthogonalized the modulators for the main regressors

that had more than one modulator (e.g. R2 and R3). The

model also included six head motion regressors, session con-

stants and missed trials as regressors of no interest. The

regressors of interest and missed trial regressor were con-

volved with a canonical HRF.

Second, we calculated the following first-level single-

subject contrasts: (i) R2 vs baseline, (ii) R5 vs baseline,

(iii) R14 vs baseline, (iv) R15 vs baseline, (v) R17 vs baseline

and (vi) R18 vs baseline.

Third, we calculated second-level group contrasts using a

one-sample t-test of the first level contrast statistics.

Finally, we also performed a conjunction analysis between

the equivalent contrasts for the monetary and social condi-

tions to identify areas involved in similar computations in

both cases. The results are shown in Figure 2 and reported in

Tables 1–3. For inference purposes we used an omnibus

threshold of P < 0.001 uncorrected with an extent threshold

Fig. 2 Basic Neuroimaging results. (Top) Activation in the vmPFC correlated with SV at the time of free choice in both monetary and social conditions. (Middle) Activation in the
vStr correlated with PE at the time of outcome in both monetary and social free choice conditions (albeit the conjunction did not survive our omnibus threshold). (Bottom)
Activation in the vmPFC correlated with R in both monetary and social free choice conditions. For illustration purposes only, all images are thresholded at P < 0.005 uncorrected
with an extent threshold of 15 voxels, except for the conjunction of PE which is P < 0.005 with an extent threshold of five voxels (see Tables 1–3 for details).
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of 15 voxels. However, given the strong priors from the pre-

vious literature about the role of the vmPFC in encoding

stimulus value and reward outcome signals, as well as the

role of the ventral striatum in encoding prediction errors, we

also report activity in these two areas if they survive small

volume corrections (SVC) at P < 0.05. The mask for the SVC

in vmPFC at choice was taken using a sphere of 10-mm

radius defined around the peak activation coordinates that

correlated with stimulus values in Rolls et al. (Rolls et al.,

2008). The mask for the vmPFC SVC at reward outcome was

given by a sphere of 10-mm radius defined around the peak

coordinates that correlated with the magnitude of reward

outcome in O’Doherty et al. (O’Doherty et al., 2002).

The mask for the SVC in ventral striatum was taken

using a sphere of 10-mm radius defined around the peak

activation coordinates that correlated with prediction

errors in Pessiglione et al. (Pessiglione et al., 2006). For dis-

play purposes only activity in selected SPMs is reported at

P < 0.005 uncorrected with an extent threshold of five voxels.

Anatomical localizations were performed by overlaying

the t-maps on a normalized structural image averaged

across subjects, and with reference to an anatomical atlas

(Duvernoy, 1999).

RESULTS
Behavioral results
Participants reliably learned to select the slot machine asso-

ciated with the highest probability of a positive valenced

outcome within a few choice trials for both social and

non-social rewards (Figure 1C). The figure also reveals two

additional interesting patterns about the learning process.

First, participants were somewhat slower at learning to dis-

criminate between social rewards than between monetary

rewards. For example, by the 10th exposure, the positive

monetary machine was chosen with 92% whereas the

social positive machine was chosen with 72% frequency

(P < 0.001). Second, participants were slower in learning

to avoid the negative slot machines than in choosing the

positive ones. For example, by the tenth presentation the

positive slot machines were chosen 85% of the time, whereas

the negative ones were avoided only 68% of the time

(P < 0.001). Both differences were not significant on the

last third of the learning trials, which suggests that they are

related to the speed of learning, and not to the ability to

ultimately learn the value of the stimuli.

Figure 1D shows the psychometric choice curves for the

social and monetary conditions based on their SV. Note

several things about the curves. First, when the values of

valenced and neutral slot machines were identical, partici-

pants exhibited no choice bias (0.5 on the y-axis corresponds

to 0.0 on the x-axis). Second, the choice curves are not sig-

nificantly different from each other (greatest difference at

x¼ 0.25 had P¼ 0.32 with Bonferroni correction). Third,

the choice curve is asymmetric: whereas participants chose

Table 3 Regions correlating with reward at outcome

Region No. of Voxels Z score x y z

Areas correlating with R in monetary choice trials (R14 vs baseline)
Occipital 124 4.74 21 �75 15
Insula 125 4.68 �33 3 12
Inferior parietal 116 4.43 �51 �36 27
Occipital 59 4.29 �6 87 18
Insula 33 4.23 39 �18 18
Cingulum 52 3.99 �6 9 36
Medial frontal gyrus 86 3.96 �15 �6 57
Inferior parietal 78 3.95 51 �33 30
Medial obitofrontal cortex 136 3.88y 6 33 �12
Superior frontal gyrus 26 3.84 �18 27 57
Superior frontal gyrus 20 3.66 �30 36 33
Rolandic operculum 18 3.66 57 0 12
Heschl gyrus 21 3.63 �39 �24 3
Inferior parietal 21 3.61 �36 �27 24
Calcarine 15 3.42 �18 �72 9

Areas correlating with R in social choice trials (R17 vs baseline)
Medial orbitofrontal cortex 29 4.16y �6 36 �15

Areas correlating with R in both monetary and social choice trials
Medial orbitofrontal cortex 129 4.16y �6 36 �15

Regions are significant at P < 0.001 uncorrected and 15 voxels extent threshold.
ySurvives P < 0.05 small volume correction. Coordinates reported in MNI space.

Table 1 Regions correlating with stimulus value at cue

Region No. of
voxels

Z-score x y z

Areas correlating with SV in monetary choice trials (R2 vs baseline)
Medial orbitofrontal cortex 214 4.53y 0 27 �21
Frontal superior 52 4.19 �18 42 51
Mid cingulum 46 4.01 0 �30 45
Angular gyrus 61 3.91 �57 �66 30
Middle temporal gyrus 24 3.85 60 �15 �6

Areas correlating with SVs in social choice trials (R5 vs baseline)
Medial orbitofrontal cortex 40 3.16y 6 27 �15

Areas correlating with SVs in both monetary and social choice trials
Medial orbitofrontal cortex 37 3.16y 6 27 �15

Regions are significant at P < 0.001 uncorrected and 15 voxels extent threshold.
ySurvives P < 0.05 small volume correction. Coordinates reported in MNI space.

Table 2 Regions correlating with prediction error at outcome

Region No. of voxels Z-score x y z

Areas correlating with PE in monetary choice trials (R13 vs baseline)
Putamen 25 4.07y �15 6 �12
Caudate 22 3.75 9 9 �3
Precuneus 15 3.49 �18 �51 33

Areas correlating with PE in social choice trials (R16 vs baseline)
– – – – – –
Areas correlating with PE in both monetary and social choice trials
– – – – – –

Regions are significant at P < 0.001 uncorrected and 15 voxels extent threshold.
ySurvives P < 0.05 small volume correction. Coordinates reported in MNI space.
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the valenced slot machine over the neutral slot machine with

probability close to one when its relative stimulus value was

sufficiently positive (far right side of curve), subjects chose

the neutral slot machine only 80% of the time even when it

was the most favorable (far left side of curve).

Neural correlates of stimulus values
We estimated a parametric general linear model of the

BOLD signal to identify areas in which activation correlated

with SV at the time of choice, and with PE and R at out-

come, during free choice trials (see ‘Methods’ section for

details). In the free choice monetary task, activation in the

vmPFC correlated with SV of the slot machines. SV signals

were additionally found in the mid-cingulum, the superior

frontal gyrus and the angular gyrus (Table 1 and Figure 2).

In the free choice social task, activation correlating with SV

was also found in a similar region of vmPFC. A conjunction

analysis showed that activation in a common area of vmPFC

correlated with SV in both social and monetary conditions.

Neural correlates of prediction errors
In the free choice monetary task, PE correlated with activa-

tion in the caudate and putamen (Table 2 and Figure 2). In

the free choice social task, PE did not exhibit any correl-

ations at our omnibus threshold (P < 0.001 uncorrected,

15 voxels). However, for completeness we show areas of

the striatum that correlate with PE in the social free choice

condition at P < 0.005 uncorrected, as well as the resulting

conjunction results using this lower threshold.

Neural correlates reward magnitude
In the free choice monetary task, reward outcome correlated

with activation in vmPFC, insula, occipital cortex, cingulate

gyrus and superior frontal gyrus (Table 3 and Figure 2).

In the free choice social task, reward outcome correlated

with activation in vmPFC. A conjunction analysis revealed

that activation in a common area of the vmPFC correlated

with reward magnitude in the social and non-social

conditions.

Ruling out a potential confound
A non-trivial potential confound is that the happy and angry

faces might activate ‘correct’ and ‘error’ feedback signals in

the brain regarding the adequacy of choice, and that the

areas of co-activation might be due to the presence of

these error signals, and not the computation of social re-

wards. In fact, these types of stimuli have previously been

used just for that purpose (Cools et al., 2007). Fortunately,

the forced choice trials provide a control that allows us to

test if the previous results are driven by this potential

confound. Figure 3 describes the strength of the correlation

between outcome reward signals and BOLD activity in the

area of vmPFC identified by the conjunction of outcome

rewards in both conditions. It shows that the strength of

the correlation in the social and monetary trials is of similar

magnitude and not statistically different (P¼ 0.91, two-sided

paired t-test) even in the absence of error feedback. This

implies that the signal in the vmPFC during social outcomes

cannot be attributed to error feedback, and that the concern

about the potential confound in this task was unfounded.

DISCUSSION
A fundamental open question in behavioral and social

neuroscience is whether common regions of the brain

encode the value signals that are necessary to make sound

decisions for both social and non-social rewards. Prior evi-

dence suggested that there might be such an overlap. In the

case of stimulus values, a recent paper found that the values

of charities at the time of decision making were encoded in

areas of the vmPFC that overlap with those that have been

found for private rewards (Hare et al., 2010). In the case of

experienced utility for social rewards, several studies found

that activity in the OFC correlates with the perceived attract-

iveness of faces (Aharon et al., 2001; O’Doherty et al., 2003a;

Cloutier et al., 2008; Smith et al., 2010). Finally, in the case of

prediction errors, studies have found that activity in the

ventral striatum correlates with prediction error-like signals

in a task involving the receipt of anticipated social rewards

(Spreckelmeyer et al., 2009) and in tasks involving social

reputation and status (Izuma et al., 2008; Zink et al.,

2008). These latter two studies in particular, compared

both social and monetary rewards, as we did in the present

study, and provided strong initial evidence for the idea that

neural representations for these two types of rewards are

at least partly overlapping. What has been missing to date

is a study that compared social and non-social rewards

Fig. 3 ROI analysis of outcome reward signals in vmPFC during forced choice trials.
Average beta plots for activity during reward outcome in forced choice trials.
The functional mask of vmPFC is given by the area that exhibits correlation with
reward outcomes in social and monetary free choice trials at P < 0.05 SVC. The
P-values inside the bars are for t-tests vs zero.
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across tasks whose basic structure and reward probabilities

are matched for the two types of rewards, and in which the

three basic computations associated with reward learning

(SV, PE and R) are at work.

We addressed this open question by asking subjects to

perform an otherwise identical simple probabilistic learning

decision-making task in which stimuli were associated with

either monetary or social rewards. We found evidence for

common signals in all cases: a common area of vmPFC

correlated with SV, a common area of vmPFC correlated

with R, and common areas of ventral striatum correlated

with PE, albeit in the later case only at a relatively low

threshold of P < 0.005 unc. Together with other recent find-

ings (Izuma et al., 2008; Zink et al., 2008; Chib et al., 2009;

Hare et al., 2010), our results provide increasing support that

overlapping areas of vmPFC and ventral striatum encode

value signals for both types of rewards (Montague and

Berns, 2002; Rangel, 2008).

Behaviorally, our subjects were slower to learn the value of

social and negative stimuli. Since the type of reinforcement

learning models that have been successfully used to account

for the behavioral data do not predict such asymmetries

(Rescola and Wagner, 1972; Sutton and Barto, 1998;

Montague and Berns, 2002; Niv and Montague, 2008), this

raises an apparent puzzle. However, there are two potential

explanations for this aspect of the findings. First, the reward

magnitude of both types of stimuli might not have been

perfectly matched in our population (so that, for example,

subjects found the $1 outcome more rewarding than the

positive social stimuli). Second, individuals stop selecting

the negative slot machine after a while, which means that

learning stops and subjects might not get sufficient negative

reinforcement to learn the full extent of the negative out-

comes associated with these machines.

We emphasize that the existence of areas involved in the

encoding of reward in social and non-social situations does

not mean that the full network involved in processing both

types of rewards is identical. For example, it is known that

areas involved is theory of mind computations are more

likely to become active during social decisions than during

choices among non-social rewards (Saxe and Kanswisher,

2003; Saxe, 2006; Krach et al., 2010).

It is important to highlight two limitations of our results.

First, given the limited spatial resolution of fMRI we can-

not rule out the possibility that there might be neuronal

subpopulations within the vmPFC and ventral striatum spe-

cialized in valuing certain types of rewards. Future studies

using fMRI adaptation designs, or direct electrophysiological

recordings within these regions, will have to address this

issue before the existence of a common valuation currency

can be definitely established.

Second, previous experiments suggest that males and

females process some types of social rewards differently

(Spreckelmeyer et al., 2009), which opens the possibility

that there might be a gender difference in the extent to

which common circuitry is used in the social and non-social

domains to carry out basic reward computations.

Unfortunately, we cannot resolve this issue with this data

set since only females participated in the experiment.
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