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There is a considerable body of research demonstrating value signals 
in the brain while participants engage in a variety of decision-making 
tasks, particularly in the medial orbitofrontal and adjacent medial 
prefrontal cortices, collectively known as the vmPFC1–7. To enable 
decisions to be made between stimuli with fundamentally different 
qualities, it has been suggested that the brain uses a ‘common cur-
rency’ in which values are assigned to different stimuli on a common 
neural scale8–10. Consistent with this hypothesis, several fMRI studies 
have reported overlapping univariate value signals in the vmPFC that 
occur while human subjects evaluate different types of goods such as 
food, money, books, DVDs, clothes and social rewards11–14.

However, the finding of overlapping neural activations representing 
goal value for distinct stimuli in a univariate manner does not provide 
sufficient evidence for the existence of a stimulus-independent goal-
value code, as required by the common currency hypothesis. There 
remains the possibility that an area in which average neural activity 
scales with goal values in a similar manner for different stimuli could 
in fact contain distributed and distinct yet spatially overlapping goal-
value codes that are unique to each stimulus. The first aim of this study 
was to determine whether distributed value signals in the vmPFC are 
unique for different categories of stimuli, even if such value signals 
overlap spatially, or, by contrast, there exists a truly generic common 
value signal in which the values of categorically distinct stimuli are 
encoded using the same distributed code.

Even if there is a common currency to facilitate comparisons across 
goals of different types when making a choice, it is also necessary to 
represent unique goal-specific value codes. This is because to com-
pute the current incentive value of particular goals, the characteristic 
sensory properties of a goal’s outcome must be integrated together 
with the organism’s current motivational state. For instance, the goal 
value of salted peanuts and a soda will differ markedly depending on 
whether an individual is salt-deprived or thirsty. Moreover, according 

to attribute integration theories of value computation, the summary 
value of a complex good is computed online by summing the value of 
component attributes of the good at the time of decision-making15,16. 
This type of mechanism would also involve the encoding of a goal-
value signal that depends on the sensory features of the goal stimulus 
being valued as an intermediate step toward the computation of a 
generic value code. This motivates the second aim of this study: to test 
for distributed patterns of activity in which goal values are encoded in 
a manner that is specific to particular categories of stimuli.

RESULTS
Decoding strategies
To address these aims, we modified a previously used paradigm11, 
in which we optimized the design for multivoxel pattern analysis 
(MVPA) techniques. MPVA has been applied in many decision-
 making paradigms; economic value17, associative value18, reward 
modality19, value-based decisions20 and consumer choices21,22 
have all been decoded from fMRI data. In this study, participants 
were scanned with fMRI while they reported their ‘willingness to 
pay’ (a proxy measure of their stimulus valuation obtained via a 
Becker-DeGroot-Marschack auction process23) for three different 
classes of goods: food, money and noncomestible consumer items 
or ‘trinkets’ (Fig. 1a). We trained a pattern classifier on distributed  
voxel activity to categorize stimuli at the time of decision-making  
as being either high or low in subjective value based on each  
participant’s ratings. Although each category was composed of 
different stimuli, many value-relevant features are common to 
all stimuli in each category and there is little to no overlap across 
categories. Thus we hypothesized that a classifier would be able 
to decode stimulus-independent value patterns across categories, 
whereas stimulus-dependent value representations should only be 
decodable within categories.
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To choose between manifestly distinct options, it is suggested that the brain assigns values to goals using a common currency. 
Although previous studies have reported activity in ventromedial prefrontal cortex (vmPFC) correlating with the value of different  
goal stimuli, it remains unclear whether such goal-value representations are independent of the associated stimulus categorization, 
as required by a common currency. Using multivoxel pattern analyses on functional magnetic resonance imaging (fMRI) data,  
we found a region of medial prefrontal cortex to contain a distributed goal-value code that is independent of stimulus category.  
More ventrally in the vmPFC, we found spatially distinct areas of the medial orbitofrontal cortex to contain unique category-
dependent distributed value codes for food and consumer items. These results implicate the medial prefrontal cortex in the 
implementation of a common currency and suggest a ventral versus dorsal topographical organization of value signals in the vmPFC.
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This motivated the following classifier training procedures: first, 
to test for the presence of category-independent value signals,  
we trained a classifier to decode value from samples drawn from one 
of the categories and tested its performance in recognizing the value 
of exemplars drawn from a different category. Second, to test for  
category-dependent value codes, we trained the classifier on one 
stimulus category only and determined whether this classifier could 
decode the value of independent exemplars drawn from that same 
category but not exemplars from other categories. Third, we tested for 
regions representing stimulus identity (particularly the category from 
which the items were drawn) independent of stimulus value.

We performed all multivariate analyses on data in which the regu-
larly observed univariate value signals had been removed (Online 
Methods), thus ensuring that the MVPA could not classify based 
on this smoothed ‘global’ activity. On account of prior findings 
in which stimulus value signals and other decision-making vari-
ables had been localized to the vmPFC1,3,24–27, we focused our 
analysis on this area (Supplementary Fig. 1). To study the spatial  
organization of various value-coding strategies in the vmPFC,  
we correlated voxel t-scores from the group-level multivariate value 
analyses with those from the univariate value analyses to determine 
how these qualitatively different value signals relate to each other. 
Moreover, we correlated the multivariate value voxel t-scores with 
voxel location to assess spatial variation in value signals across the 
vmPFC. These correlation analyses suggest a topographic map of 
value signals in the vmPFC with respect to stimulus dependency 
and coding complexity (the distributed or univariate nature of the 
neural activity).

All reported value-related effects were significant at a voxel-wise 
false discovery rate (FDR)-adjusted threshold of P < 0.05 corrected 
for multiple comparisons in the vmPFC (referred to as a small volume 
FDR (SVFDR) correction). Effects that are unrelated to value repre-
sentation were corrected across the whole brain (denoted FDR) at the 
same threshold (Online Methods). We applied a cluster extent thresh-
old of ten voxels in all analyses. All conjunctions were performed 

using the ‘conjunction null’ hypothesis28. A complete list of fMRI 
results is available in Supplementary Table 1.

Univariate stimulus value signals
To replicate previously reported univariate results11 in which an  
overlapping area of the vmPFC had been found to correlate with the 
stimulus value of goods from all three categories, we performed the 
same univariate analysis11, testing for overlapping correlations with 
willingness to pay (WTP) for the goods from each category. Consistent 
with our previous findings, an area of the vmPFC showed a signifi-
cant effect (P < 0.05 SVFDR) in a conjunction contrast (peak (x, y, z =  
0, 35, −7), t = 3.14; Fig. 1b). We present distributions of WTP per cat-
egory in Figure 1c. We then searched for a brain region expressing 
univariate value uniquely for a particular class of items by examining 
linear contrasts between the WTP regressor parameter estimates for 
each category. No part of the vmPFC showed a significant correlation 
between smoothed blood oxygen level–dependent (BOLD) activity and 
WTP for only one of the categories (even at P < 0.005, uncorrected). In a 
whole-brain analysis, we observed some activation in parts of the visual 
and premotor cortices for the trinkets category only (only at P < 0.005, 
uncorrected), but these clusters did not survive a corrected threshold. 
This lack of category-dependent univariate value coding is in agreement 
with previous results11.

Distributed category-dependent stimulus value signals
Our multivariate analyses showed that regions of the medial orbito-
frontal cortex (mOFC) encode the value for food and trinkets in a  
category-dependent manner (Fig. 2a). A posterior region of the 
mOFC exhibited food-dependent value coding (peak (x, y, z = −9, 
17, −22), t = 3.05), whereas a more anterior region of the mOFC 
exhibited trinket-dependent value coding (peak (x, y, z = −3, 41, −11), 
t = 3.86). We did not find evidence for a unique category-dependent 
value-coding region for monetary gambles in prefrontal cortex.

To replicate these results independently, we repeated our procedures 
on a previously acquired data set11, which used a similar task but was 

Figure 1 Task, univariate value signals and 
behavioral results. (a) Illustration of experiment 
time course and data extraction. Subjects were 
presented with an 80% chance of obtaining 
a stimulus drawn from a pool of 120 stimuli 
evenly divided into three categories (food, 
money and ‘trinkets’) and they responded 
with an integer WTP value between 0 and 4 
euros (approximately $5.45) inclusive (Online 
Methods). In preparation for the multivariate 
analyses, we extracted a sample of neural data 
at the bid time point in each trial (with a shift  
of 5 s to account for hemodynamic delay).  
For a given bid, the two volumes closest in time 
(one before and one after) to the shifted time 
point were averaged to create a single sample19. 
(b) A region of the vmPFC, overlapping with a 
previous similar result11, was parametrically 
modulated by the chosen bid value at the time 
of decision, peak coordinates (x, y, z = 0,  
35, −7), t = 3.14, P < 0.05 SVFDR (results 
presented at P < 0.005, uncorrected).  
(c) Distribution of WTP bids per category 
(similar to those obtained previously11). The 
average bid was €1.47 (s.d., €1.28) for food 
items, €1.91 (s.d., €1.3) for monetary sums, 
€1.97 (s.d., €1.56) for trinkets. There was a difference between the mean bids of the three categories (ANOVA, P < 0.001). The average bids were 
significantly greater than zero for all three classes (P < 0.001). The majority of bids were nonzero (71% for food, 82% for money and 74% for trinkets).
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not optimized for MVPA. This additional analysis revealed the same 
pattern of category-dependent stimulus value signals in the mOFC, 
with an anterior locus encoding the value of trinkets and a posterior 
locus encoding the value of food goals (Supplementary Fig. 2).

Spatial organization of category-dependent value codes
Taking MVPA second-level t-scores as an indication of the strength 
of the distributed value representation, we found (Fig. 2b) that 
the strength of food-value representation declined (r = −0.52) 
along the posterior-anterior axis, whereas the value representation 
strength of trinket items increased (r = 0.54). Linear regressions of 
these voxel accuracy t-scores against their Montreal Neurological 
Institute (MNI) y coordinates, performed separately for each 
category, were highly significant according to parametric tests  
(P < 10−21). To control for correlation inflation caused by the spatial 
smoothing of the classification results, we ran a simulation analy-
sis (Online Methods). In this nonparametric test, no correlation 
drawn from the simulated null distribution exceeded the empiri-
cally observed correlations for either food or trinkets, thereby rul-
ing out a spatial smoothing confound. These results therefore show 
an interaction between item category and the directionality of the  
encoding gradient.

We also performed an analogous test using a leave-one- 
participant-out procedure to alleviate concerns about the possi-
bility of a non-independence bias contributing to this result. This 
supplementary approach also yielded a significant interaction  
(P = 0.039) between decoding accuracies for food and trinket  
values as a function of posterior versus anterior location in the 
mOFC (Supplementary Fig. 3). A similar analysis in the mPFC 
showed that this category-dependent encoding gradient was not 

present in the mPFC and thus was specific 
to the mOFC.

Another potential concern is that our 
anterior-posterior gradient results are due 
to differences in generic properties (that is, 
independent of the category definitions) of 
the goal stimuli across categories such as, 
for instance, the familiarity of the stimuli 
or their availability to the participant. To 
address this, we obtained behavioral ratings 
for the stimuli from a subset of the original 
participants (8 of 13) on five attribute scales 
(valence, intensity, liking, access and famili-
arity), and tested for a difference in average 
ratings between the food and trinket stimu-
lus categories. At the group level, there was 
no significant difference with respect to 
any attribute (P > 0.05, repeated measures  
t-tests). There were few significant differ-
ences (P < 0.05, point-biserial correlations) 

in some of these attributes at the level individual subjects, and none of 
those differences were consistent across individuals (Supplementary 
Fig. 4 and Supplementary Tables 2–4). This analysis therefore sug-
gests that potential generic stimulus-attribute differences do not 
explain the anterior-posterior gradient results.

Category-independent value signals
In contrast to the category-dependent value representation results 
in the mOFC, we found that a more dorsal region of the vmPFC 
(overlapping with that from the univariate analysis; Fig. 3) contained 
category-independent value signals. A classifier trained in this area 
using data from one item category could predict the value class (high 
versus low) in either of the other stimulus categories as well as in its 
own category. At P < 0.05 (SVFDR), all six cross-category training and 
testing combinations were significant in a conjunction test (peak (x, 
y, z = −3, 41, 3), t = 2.40).

A potential confound is the fact that for zero bids (which account 
for a large proportion of the low-value items), no motor response had 
be performed, whereas high-value items always required a button  
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Figure 2 Distributed category-dependent value codes in the mOFC for food and trinkets.  
(a) Stimulus value represented in distributed codes in the mOFC for food and trinket categories.  
The peak classification accuracy t-scores were at the following coordinates: food, (x, y, z = −9, 17, 
−22), t = 3.05; trinkets, (x, y, z = −3, 41, −11), t = 3.86; P < 0.005 SVFDR (results presented at  
P < 0.005, uncorrected). (b) Plot of MVPA second-level voxel t-scores versus y-axis location. Food 
and trinket MVPA value t-scores are plotted in blue and red, respectively. Gray dashed line indicates 
P < 0.005 uncorrected significance threshold. Large dots indicate peak t-scores. 
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press. Thus, the neural processes involved 
in generating the motor response may be 
contributing to the significant category-independent value clas-
sification signals in the vmPFC. To account for this possibility, we 
performed a category-independent value searchlight analysis with 
zero bid trials omitted and tested whether there was a significant 
classification signal within a 20 mm radius sphere surrounding the 
peak coordinates of the category-independent value signal identi-
fied previously. We again found evidence for a category-independent  
value signal, albeit at an uncorrected threshold because of the 
smaller number of trials and smaller value variance (peak (x, y, z = 9,  
53, 7), t = 1.94). In addition, we found category-independent effects 
in the mPFC in the previously acquired data11 (Supplementary 
Fig. 2a) yet in that paradigm a motor response was performed in 
all trials. Thus, the dorsal portion of vmPFC represented value in 
a category-independent manner regardless of the motor response 
requirements.

Another issue is that the information on the bid-feedback screen 
(Fig. 1a) is correlated with our measurement of goal value, and thus, 
activity could be driven by a signal elicited by the bid feedback as 
opposed to the goal value itself. However, in the previously acquired 
data set11, no feedback was given to the subjects at the end of each 
trial, yet a category-independent value code was still present.

Univariate and multivariate value-code comparison
Our finding of both univariate and multivariate value signals in the 
vmPFC raises the question of how these different value-encoding 
mechanisms relate to each other. It is possible that a set of voxels 
might encode both a univariate code and a multivariate code simul-
taneously. Alternatively, a set of voxels might exclusively encode a 
univariate value signal but no multivariate value signal or vice versa. 
To establish whether value signals in the vmPFC are either uniquely 
multivariate or univariate, or exhibit multiplexed univariate and mul-
tivariate value coding, we computed correlations between multivari-
ate decoding accuracy and univariate signal strengths separately for 
our two main areas of interest: the mOFC and the mPFC. A multi-
plexed signaling strategy would manifest as a relatively high correla-
tion between multivariate decoding accuracy and univariate signal 
strength. Alternatively, a low correlation would imply that either a 
univariate or multivariate signal is present but not both. These distinct 
possibilities have implications for the computational nature of value-
encoding processes occurring in a given region.

On the basis of the findings for category-dependent multivariate 
value codes in the mOFC and univariate value signals more dorsally 
in the mPFC, we hypothesized that the complexity of value coding in 
vmPFC might follow a ventral-dorsal gradient such that value codes 
distributed along the orbital surface tend to not contain any univari-
ate encoding, but that as one moves superiorly up the medial wall, 

value codes could come to increasingly reflect a univariate code in 
conjunction with multivariate signals, while at the same time shed-
ding category dependency in the value code.

This hypothesis makes several predictions: (i) the strength of  
univariate value coding should increase along the z axis, whereas  
multivoxel encoding should be more evenly balanced between the 
mOFC and the mPFC, (ii) the univariate signal should be relatively 
stronger than the multivariate signal in the mPFC on average across 
voxels, and (iii) univariate and multivariate coding should be more 
highly correlated dorsally in the mPFC (such that both of these 
encoding strategies are present in the same voxels). We investigated 
this coding-gradient hypothesis by testing each of these predic-
tions in analyses that compare the univariate and within-category 
multivariate value-coding results in the mOFC and the mPFC:  
(i) we correlated second-level voxel t-scores against voxel MNI  
z coordinates across the vmPFC (that is, mOFC and mPFC together) 
for the univariate and multivariate signals separately and examined 
whether these correlations were significantly different, (ii) we used 
repeated measures t-tests on a per-voxel basis to study how the relative 
strengths of these encoding strategies change across the vmPFC, and 
(iii) we implemented a correlation study to investigate whether the 
predictive relationship between univariate and multivariate signaling 
is different in these two subregions.

To implement the first test, we correlated the multivariate and uni-
variate value t-scores from the second-level analyses with the z-axis 
coordinate of the associated voxel (Fig. 4a). We did this for the food 
stimulus category (univariate r = 0.89, distributed r = 0.4) and trin-
ket stimulus category (univariate r = 0.72, distributed r = 0.68). For 
each combination of item class and coding strategy, the strength of 
the value signal increased along a ventral-dorsal gradient (P < 0.05, 
in both parametric and nonparametric tests). By bootstrapping the 
empirically observed results, we estimated sampling distributions for 
these correlation strengths. Nonparametric confidence bounds on 
the correlation strengths were established, and they indicated that 
although the strength of both signals increased along a ventral-dorsal  
gradient, univariate coding increased significantly more steeply  
(P < 0.05). In addition, we implemented a similar analysis investigat-
ing differences between value representation peaks in ventral and 
dorsal regions of the vmPFC for multivariate and univariate encod-
ing strategies, using data on a leave-one-participant-out basis. This 
analysis confirmed these results (Supplementary Fig. 5).

Our second test examined the relative prevalence of univariate and 
multivariate coding in these regions. We found a significant difference 
(P < 0.05, repeated measures t-tests) in the relative strengths of the 
multivariate and univariate value signals between the mOFC and the 
mPFC for both the food and trinket stimulus categories by comparing 
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t-scores on a per-voxel basis. This result shows that the multivariate 
signals were stronger than the univariate signals in the mOFC, and the 
opposite in the mPFC (Fig. 4b). An important caveat here is that uni-
variate and multivariate analyses have different intrinsic sensitivities29, 
thereby complicating the interpretation of absolute differences. 

The third test aimed to determine how the univariate and distrib-
uted codes interact in the mOFC and the mPFC. The second-level 
t-scores from the univariate and multivariate analyses were corre-
lated on a per-voxel basis in each of these two subregions separately. 
This revealed a strong difference between the subregions, whereby 
the univariate and multivariate t-scores were significantly (P = 0.0, 
nonparametric tests) more correlated in the mPFC for both food  
(r = 0.24) and trinkets (r = 0.61) stimulus categories than in the mOFC 
(food r = −0.28, trinkets r = 0.34; Fig. 3b). This indicates that the 
distributed goal-value signals found in the mOFC are largely inde-
pendent from univariate goal-value codes, whereas this is not the 
case in the mPFC.

Distributed coding of stimulus category
Finally we looked for regions showing distributed coding of stimulus 
category, independent of its value. We found category-discriminating 
activity in several areas of the brain (Fig. 5). Areas in the frontal lobe 
included (coordinates are given in the form (x, y, z)) the mPFC (peak 
(−3, 20, −22), t = 6.12), the central OFC (peak (−21, 38, −11), t = 11.14), 
the dorsolateral PFC (right hemisphere peak (45, 32, 21), t = 5.84; left 
hemisphere peak (−60, 17, 14), t = 11.34) and the frontopolar cortex 
(peak (6, 65, −11), t = 6.89). In the temporal lobes, areas included the 
fusiform gyrus (peak (24, −43, −29), t = 6.90), the parahippocampal 
gyrus (peak (36, −10, −33), t = 6.56) and the inferior temporal gyrus 
(right hemisphere peak (30, −73, −15), t = 7.36; left hemisphere peak 
(−45, −64, −22), t = 7.64). Toward the posterior, the intraparietal sulcus 
(right hemisphere peak (33, −70, 42), t = 7.94; left hemisphere peak 
(−48, −31, 42), t = 11.65), the precuneus (peak (−6, −64, 14), t = 5.54), 
the posterior cingulate cortex (peak (3, −43, 42), t = 7.43) and the visual 
cortex (peak (9, −79, 32), t = 11.34) were implicated.

DISCUSSION
It has been argued that to make decisions involving different types of 
goods the brain needs to encode item values on a comparable scale, 
often called a ‘common currency’8–10. Although studies have found 
that BOLD responses in an overlapping area of the vmPFC correlate 
with the value of stimuli at the time of decision-making11,12,14,30,31, 
there are many open questions regarding the nature of the code used 
in these computations. In particular, previous tests cannot rule out 
the possibility that the results were generated by category-dependent  
value codes (for example, foods versus ‘social’ versus objects) that 
are implemented in distinct yet spatially intermingled networks 
and which are inconsistent with the common-currency hypothesis.  
In addition, previous studies have not found a spatial topography in 
the organization of goal-value signals in the vmPFC.

Stimulus dependency of mPFC value coding
Here, by using a paradigm optimized for multivariate analyses, we 
found evidence for the existence of both category-dependent value 
signals (which only reflect the value of particular types of stimuli), 
and category-independent value signals (which reflect the value of 
all stimuli, regardless of their category). The category-independent 
value signals were located in a region of the vmPFC along the medial 
wall but above the orbital surface and coincided substantially with 
the areas found in previous univariate analyses11 as well as with the 
areas found in a univariate analysis of the present data set. Our results 
provide evidence, up to the fidelity provided by multivoxel fMRI32,33, 
for the existence of a truly generic value code in the mPFC in which 
goal values are represented independently of the category from which 
the stimuli are drawn. They also point to a ventral-dorsal gradient in 
the vmPFC, as one transitions from the category-dependent value 
regions of the orbital surface to the more dorsal category-independent 
regions of the mPFC. This suggestion is consistent with the fact that 
in many fMRI studies that have identified value representations in 
the vmPFC for different classes of reinforcers using standard univari-
ate techniques, decision-value and goal-value signals tend to appear 
superior to the orbital surface2,4,11. In contrast, we found that two 
distinct voxel clusters in the mOFC encoded category-dependent goal 
values for food and trinkets; a more posterior region contained food-
dependent value signals, whereas a more anterior region of the mOFC 
encoded a trinket stimulus–dependent value signal.

A correlation analysis of the classifier’s local sensitivity versus spa-
tial location revealed an anterior-posterior gradient in the mOFC, 
with category-dependent values of increased abstractness (trinkets) 
encoded more strongly toward the anterior. Although a similar effect 
could be caused by two separate food-stimulus and trinket-stimulus 
peaks with Gaussian noise, visual inspection of the t-score plots and 
the strength of the linear dependence suggest an actual gradient effect 
in the nature of the value code. These findings resonate with the results 
of a meta-analysis34 in which an anterior versus posterior gradient was 
reported in the mOFC in response to reward outcomes according to 
the ‘complexity’ or degree of abstractness of the reinforcer. A previ-
ous univariate fMRI study had reported dissociated posterior and 
anterior clusters of activation in the OFC for reward-expectation rep-
resentations for sexual versus money reinforcers35, though this effect 
was located more laterally where we observed stronger distributed 
encoding of stimulus category rather than stimulus value. However, 
unlike these studies, the results of the present study correspond spe-
cifically to goal-value representations where values are used as an 
input to the choice process as opposed to pure expectancy signals or 
the value computed at the time of the consumption experience (often 
called outcome value). These results support the proposal that there is 

x = –32, y = 31, z = –15

t-value0

3.5

7

Figure 5 Stimulus category coding. In the frontal lobe, the central OFC 
(peak (x, y, z = −21, 38, −11), t = 11.14), the mFPC (peak (x, y, z = 6,  
65, −11), t = 6.89) and the dorsolateral PFC (peak (x, y, z = −60, 17, 
14), t = 11.34) contained distributed neural patterns pertaining to 
the identity of the stimulus under consideration. Toward the posterior, 
regions of the temporal lobes including the fusiform, inferior temporal 
and parahippocampal gyri, and areas around the intraparietal sulci also 
reflected category-discriminating activity (Supplementary Table 1). 
Results are presented at P < 0.005 FDR.
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indeed a gradient in the mOFC whereby value signals corresponding 
to the processing of more biologically basic stimulus attributes, such 
as food or sexual stimuli, are encoded more toward the posterior, 
whereas value signals of more abstract stimulus attributes are encoded 
in regions that are located toward the anterior.

The findings obtained here implicating the vmPFC in the encoding 
of a common currency for goal values are consistent with evidence 
from lesion studies in both human and nonhuman primates impli-
cating this region in value-based decision-making36–38. The present 
results suggest that a lesion to the vmPFC would alter or disrupt 
the encoding of goal values that are in turn used to guide behavior, 
thereby resulting in a decision-making impairment. In particular, an 
implication of the present findings is that a selective lesion to either 
anterior or posterior mOFC might result in a very specific impairment 
at decision-making over only certain classes of goods. Although it is 
unlikely that lesions studied in human patients would ever have the 
anatomical specificity to enable such a possibility to be tested, this is 
something that could be potentially tested in an animal model.

It is notable that we did not find evidence for a category-dependent 
value code for monetary gambles although both a univariate value 
signal for these gambles and category-independent value signals 
(training or testing on neural samples from the money category) were 
robustly encoded more dorsally in the mPFC areas involved in imple-
menting category-independent value codes. One possible interpreta-
tion of this result is that because money is by definition a generalized 
reinforcer that has acquired value by virtue of its exchangeability for 
other reinforcers, money might only be represented according to a 
generic (category-independent) as opposed to a category-dependent 
value code. Furthermore, money is not tied to a specific sensory 
modality and is therefore not dependent on specific sensory coding 
mechanisms (such as taste, olfaction or vision). Moreover, within the 
attribute integration account of valuation, given that money does not 
have any component attributes, it could be argued that money cannot 
be encoded in a category-dependent manner. Another more mundane 
possibility is that, unlike items drawn from the food-stimulus and 
trinket-stimulus categories, the actual values of the monetary sums 
are presented explicitly and do not require a complex stimulus-to-
value transformation as would be the case if, for example, piles of 
coins had been displayed whose composition and size were indicative 
of monetary value.

Multiple brain regions encode stimulus category
Beyond goal-value signals, we also found evidence for value-
 independent category-identity codes in a region of the central OFC 
but also extending more medially to overlap with some of the value-
 coding areas. These findings suggest the existence in parts of the OFC 
of stimulus-identity codes. Such stimulus-identity information was 
also encoded in many other parts of the brain outside of the OFC, 
including in the dorsal frontal cortex, parietal cortex and visual 
cortical areas. Many of these areas were previously implicated in an 
electroencephalography study of the time course of value computa-
tion39. Nevertheless, the presence of such signals in the OFC provides 
insight into the possible mechanisms by which value codes might 
get computed in the vmPFC during the choice process. To compute 
a category-dependent value code, it is clearly necessary to first have 
access to information about the identity of the stimulus so that the 
incentive value of the goal state can be retrieved with respect to prior 
associations between the identity of the goal state and motivational 
states acquired through incentive learning40. Such goal-value codes 
are also likely necessary to facilitate choices over goods to be com-
puted because when comparing between the values of different goods, 

it is necessary to be able to bind the results of the comparison pro-
cess with the identity of the specific goods in question. Furthermore, 
according to the attribute integration view of value computations, it is 
necessary to encode information about various attributes associated 
with each stimulus to pass such information to the areas involved 
in category-dependent valuation. Additional work will need to 
be performed to determine how these distinct value and identity  
representations in the vmPFC get integrated and used during the  
decision-making process.

Neuroanatomy of stimulus information brain map
The loci of the value-coding and category-coding results in the vmPFC 
can be interpreted in terms of the neuroanatomical structure of the 
brain. Based on cytoarchitectonic heterogeneities in the OFC and 
comparative neuroanatomy studies41,42, a broad distinction has been 
made between a lateral prefrontal network (areas 11, 13 and 47/12) 
covering central and lateral OFC and a medial prefrontal network 
(areas 11m, 13 medially, along with 14 and extending up the medial 
wall to areas 10m, 24, 25 and 32) corresponding to ventromedial 
prefrontal cortex. Recently, a resting-state connectivity study43 has 
provided functional evidence in support of this parcellation scheme 
in the human OFC. The sensory information received by central OFC 
and the visceromotor connections of the medial network41,44 suggest 
that the sensory-visceromotor pathway from the central OFC to the 
mOFC to the mPFC could support a high-level stimulus-to-value 
transformation during decision-making. In this study, we found that 
the central OFC coded stimulus category bilaterally, with these areas 
partially overlapping value-coding regions in the vmPFC. This part 
of the OFC has been shown to receive sensory input in all sensory 
modalities (both unimodal and multimodal), association cortices and 
memory-related regions, and, in particular, is connected to several of 
the posterior regions that we found to encode stimulus category in 
a distributed manner. Moreover, adjacent to this central OFC result, 
category-dependent value signals were located in the medial OFC, 
which has strong reciprocal connections to limbic areas involved in 
the emotional and hedonic processing of stimuli, along with other 
parts of prefrontal cortex, which may contribute to an evaluation of 
the stimulus in the context of the current internal state of the subject 
and external state of the world45. These effects could include inhib-
iting desires to consume food46 or retrieving goal-related episodic 
memories47 such as remembering whether or not a book has been 
read or not. Finally, these attribute-dependent value signals would 
be passed to the more dorsal areas of the mPFC involved in category-
independent value representations where a summary goal value is 
transmitted to action-control circuits via the mPFC15,48–50.

Generality of results and analysis methodology
We cannot rule out the possibility that if we had used an entirely 
different class of goods (such as luxury goods or social stimuli), the 
results may have been different. Future studies will need to establish 
the generality of the common coding area in the more dorsal part of 
the vmPFC identified here as well as whether other classes of items 
are coded uniquely in the medial orbital surface.

Finally, the importance of the multivariate methodology used 
in this work is worth highlighting. As described above, previous 
studies had found that neural activity in an overlapping area of the 
vmPFC, which encompasses the area where we found category-
 independent goal-value signals, correlates with the value of a wide 
class of stimuli at the time of choice. However, none of these pre-
vious univariate studies found the category-dependent value codes 
identified here. The reason for this might be due to the nature of 
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the category-dependent signals. If, as conjectured above, they reflect 
the computation of value for stimulus-specific attributes, then 
the category-dependent value signals are likely to be distributed 
across multiple voxels, which makes them difficult to localize using  
univariate approaches.

METhODS
Methods and any associated references are available in the online 
version of the paper.

Note: Supplementary information is available in the online version of the paper.
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ONLINE METhODS
Task. Subjects were presented with high-resolution images of three classes of 
goods: snacks, consumer goods (for example, DVDs and books) and monetary 
prizes (see Supplementary Table 5 for a complete list). In each trial, participants 
bid for the right to the prospect of obtaining a displayed item with 80% prob-
ability and nothing otherwise. We introduced the probabilistic element to ensure 
that valuations for monetary sums would be nontrivial. Bids were elicited using 
a Becker-DeGroot-Marschack (BDM) auction process. In a given trial, the par-
ticipant bid €0, €1, €2, €3 or €4 for an item. At the end of the experiment one trial 
was selected at random for each of the categories. For each trial selected, a random 
counter-bid of €0, €1, €2, €3 or €4 was drawn with equal probability. If the bid 
equaled or exceeded the random counter-bid, then participants paid the counter-
bid amount and received the corresponding item prospect. Otherwise, they paid 
nothing. These rules favor an optimal strategy of bidding the amount closest to 
one’s subjective valuation. The BDM rules were fully explained to participants.

Subjects were asked to refrain from eating for 4 h before arrival for testing. 
Compliance was confirmed through self-reports. Participants were requested to 
remain in the laboratory for 1 h after the scan to consume items obtained during 
the experiment. This helped maximize participants’ valuation for food items 
during testing. In each trial, subjects were endowed with €4 for bidding (since 
one trial from each category is ultimately played out, this corresponded to a €12 
endowment across all three categories). Any remaining money from the initial 
endowment was retained by the subject.

Each trial began with a stimulus presentation (Fig. 1a). Subjects generated a 
bid within 5 s by pressing one of four buttons or did not respond for a zero bid.  
A presentation of the bid amount followed (500 ms). The intertrial interval was 
uniformly drawn from 1–23 s. Four sessions of length 16 min each were com-
pleted. The hand used for responding was switched after two sessions and the 
correspondence between the buttons and bids was alternated for the second and 
fourth sessions. The button configurations were practiced at the beginning of 
each session.

fmRI data acquisition. Fifteen healthy right-handed subjects participated in 
this study. The data from two subjects were excluded because of technical prob-
lems with the MRI scanner leaving 13 subjects (eight male; mean age, 22.1; s.d.,  
3.6 years). All subjects gave informed consent and the experiment was approved 
by the School of Psychology Research Ethics Committee, Trinity College Dublin. 
Functional imaging was performed on a 3T Philips scanner with an 8-channel 
SENSE head coil at Trinity College Institute of Neuroscience, Dublin, Ireland. 
Thirty-five contiguous sequential ascending echo-planar T2*-weighted slices 
were acquired for each volume giving whole brain coverage with a slice thick-
ness of 3.55 mm and no slice gap (in-plane resolution, 3.00 mm × 3.00 mm; 
repetition time (TR), 2,000 ms; echo time (TE), 30 ms; field of view, 240 mm × 
240 mm; matrix, 80 × 80). A whole-brain high-resolution T1-weighted structural 
scan (voxel size, 0.9 mm × 0.9 mm × 0.9 mm) was also acquired for each subject. 
Slice orientation was tilted −30° from a line connecting the anterior and posterior 
commissure to alleviate signal loss in the OFC11.

data preprocessing and filtering. Slice timing correction, motion correction 
and spatial normalization was applied to the data. For the general linear model 
(GLM), the data were high-pass–filtered (120 s cut-off), and serial autocorrela-
tions were estimated using a first-order autoregressive model.

To minimize differences in data preprocessing between the univariate and 
multivariate approaches, we carried out the following: prior to multivoxel sample 
extraction, low-frequency components (below 1/120 Hz), serial autocorrelations 
and head motion were subtracted from the data. In addition, smoothed univariate 
value signals for all three categories identified in the GLM analysis were removed 
from the data to ensure that the multivoxel patterns identified in the MVPA did 
not reflect overlying univariate signals. This was accomplished by multiplying 
the convolved parametric value regressor by the beta estimated in the GLM and 
subtracting the resulting time series from the data on a per-voxel basis. To correct 
for session-related mean and scaling effects, we applied second-order detrending 
and z scoring on a per-voxel per-session basis18,20,51.

Here we use the terms ‘univariate’ and ‘multivariate’ to refer to signals identified 
using mass-univariate general linear modeling and MVPA (after orthogonaliza-
tion with respect to the univariate signals), respectively. An alternate interpretation  
of ‘univariate’ and ‘multivariate’ is the signal identified using the mean and 

‘mean-subtracted’ activity, respectively, within the searchlight. We repeated the 
value-decoding analyses using this alternative approach, which yielded similar  
results (Supplementary Fig. 6).

We applied spatial smoothing (8 mm full-width-half-maximum) to the data 
used for the univariate GLM but not in the multi-voxel pattern analysis to pre-
serve local variance18,51. Preprocessing and filtering was performed using SPM8 
(http://www.fil.ion.ucl.ac.uk/spm/), except detrending and z-scoring for which 
the PyMVPA package was used52.

general linear model. We used a GLM to identify activity at decision time cor-
relating with goal values (as measured by WTP). The GLM included regressors 
for image presentation and bid defined for each item category (0 s duration). 
Subject-specific WTPs were used as a parametric modulator for each regres-
sor. To minimize head-motion confounds, motion parameters were included 
as nuisance regressors. For the second-level analysis, beta maps corresponding 
to the WTP regressors for each subject for each item category were included in 
a 3 × 1 factorial design (each category being a factor). To test for regions rep-
resenting stimulus value for all item categories in a univariate manner, we per-
formed a conjunction analysis across all three categories using the ‘conjunction  
null’ hypothesis28.

classification algorithm.  We used a Gaussian naive Bayes (GNB) classification 
algorithm53 with an assumption of zero covariance across voxels. To perform 
binary classification the algorithm first estimates mean activity and variance vec-
tors from training data for the Gaussian distributions p(x|A) and p(x|B). Then, the 
algorithm assigns a test sample xtest to the condition with the maximum posterior 
probability at xtest based on the estimated distributions: if p(xtest|A) > p(xtest|B) the 
algorithm infers that xtest was sampled under condition A. Generalization accu-
racy was estimated using cross-validation52. This involves training and testing on 
mutually exclusive subsets of samples and repeating with a different partitioning 
on each ‘fold’. Cross-validation was done on a leave-one-session-out basis. On 
every fold, the classifier was trained on three sessions and tested on the remain-
ing session, thereby avoiding session-related dependencies between training and 
testing samples51,53,54. Accuracy scores were averaged to give the generalization 
accuracy. All preprocessing and filtering was performed on a per-session basis.

multivoxel pattern analysis. A searchlight procedure18,52,55 provided a spatially 
unbiased estimator of distributed activity across the brain. Each fMRI data sample 
had two task-related characteristics, stimulus category and value. A potential 
concern is that significant correlation between stimulus category and stimulus 
values could bias the classification results, as the classifier might leverage vari-
ance, which distinguishes between categories when attempting to decode value 
and vice versa. WTP for food was lower on average compared to the money or 
trinket categories (Fig. 1c). To address this concern, the set of samples for each 
category was median split into ‘high’ and ‘low’ value classes on a cross-session 
basis for each subject. This relabeling eliminates correlations between value and 
category labels for every subject (Spearman correlation, P > 0.2 for all subjects), 
resulting in six classes of samples, one for each value/category combination. To 
avoid class imbalance bias, all analyses were balanced on a per-session basis (that 
is, the number of samples in each class was equalized for each session and there-
fore cross-validation folded) by randomly removing some samples. Analyses were 
run multiple times to confirm that the outcome of the analysis was not dependent 
on the balancing procedure.

Category-independent value. We identified category-independent value 
signals as those whose representations enabled decoding of value level across 
stimulus categories. We ran all six binary cross-category value-classification 
analyses by training to decode high versus low value on samples drawn from 
one category (for example, food) and testing on samples drawn from another 
(for example, money).

Within-category value. We searched for areas that could predict value in the 
same category. Note that the value representations pinpointed in this analysis may 
or may not be category-dependent, but the results of this exercise are necessary 
to carry out the category-dependent analysis described next.

Category-dependent value. We identified regions involved in category-dependent  
valuation as those that allowed us to decode values only in particular categories. 
These value representations would be coded in voxel response distributions, 
which differ across categories.
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For this, we compared results of the cross-category and within-category value-
decoding analyses. We first identified voxels that could significantly decode  
(P < 0.005 SVFDR) between high and low values in each category. Next we tested 
whether these areas could predict value across categories. Any voxel that sur-
vived the cross-category analysis, even at P < 0.05 (corrected for two compari-
sons at each voxel), was deemed to exhibit properties of category-independent  
value encoding. Clusters that survived the within-category analysis but that 
did not survive the cross-category analysis were deemed to involve category- 
dependent valuation.

Stimulus category identity. Finally, we looked for regions exhibiting multivari-
ate encoding of stimulus category. We implemented three binary classification 
analyses: food versus money, money versus trinkets and food versus trinkets. The 
searchlight accuracy maps were entered into a conjunction analysis28 to identify 
regions whose activity discriminated between all category pairs. This ensured 
that areas of the brain identified by this analysis contained distributed codes 
pertaining to the identity of each stimulus category individually.

Significance testing. For the searchlight analyses, the percentage of correctly 
identified samples, averaged across folds in the cross-validation, was used as the 
classification score in each searchlight, and this score was assigned to the voxel at 
the center. This defined a classification accuracy map for each subject, which was 
then smoothed with an 8-mm full-width-half-maximum kernel. A second-level 
analysis was implemented by performing voxel-wise t-tests comparing the distri-
bution of accuracies across subjects against 50%, which is the expected perform-
ance of an algorithm randomly labeling samples. As multivariate classification is 
susceptible to optimistic classification biases, we carried out permutation tests to 
validate our decoding procedure56 (see below).

All univariate and multivariate results were significant at voxel-wise FDR-
adjusted P < 0.05 with a 10-voxel extent threshold. We had a strong prior 
hypothesis regarding value signals in medial prefrontal regions1,3,24–27; thus, for 
value-based analyses, correction was performed within a vmPFC mask defined 
a priori from related functional11 and anatomical57 studies (Supplementary  
Fig. 1). This correction threshold is denoted P < 0.05 SVFDR. For other analyses, 
unrelated to value, whole-brain correction was used (denoted P < 0.05 FDR). 
For display purposes, we presented all results at P < 0.005. Results corrected 
within a small volume were displayed uncorrected. All results were overlaid on 
a normalized T1-weighted image averaged across subjects. Our main results are 
based on the P < 0.05 SVFDR threshold (and displayed at P < 0.005 uncorrected) 
because (i) it was used previously in a similar paradigm11, thus allowing a direct 
signal power comparison, and (ii) controlling the FDR rather than the family-
wise error rate has been shown to have greater sensitivity with minimal risk of 
false positives58.

Permutation testing for multivariate analyses. For each multivariate analysis, 
the searchlight procedure was repeated 200 times with permuted labeling17,51,55. 
To satisfy exchangeability criteria59 and to prevent label imbalances in the cross-
validation, labels were permuted along with their positions in the data set par-
titions. The resulting accuracy maps were entered into mass univariate t-tests 
to determine whether the accuracy distributions over the permuted data sets 
were significantly different from chance. At P < 0.1, for all analyses, no voxel’s 
accuracy distribution significantly deviated from random chance in any subject. 
This indicates that the classification algorithm used for the data analysis across all 
conditions was fair and unbiased, that is, the significant results reported for the 
nonpermuted labels were not due to an optimistic classification bias.

Region-of-interest gradient analyses. The t-score maps computed at the second 
level in our univariate and within-category multivariate value analyses are indica-
tive of the relative strengths of distinct types of value coding in the vmPFC. We 
used these maps to investigate how the structure of stimulus-value representa-
tion varies along an anterior-posterior gradient in the mOFC in relation to the 
abstractness of the stimulus being valued and a ventral-dorsal gradient in the 
vmPFC as a whole with respect to the relationship between the univariate and 
multivariate representation of value.

Anterior-posterior gradient of stimulus abstractness. For voxels in the mOFC, the 
t-scores obtained from the within-category value-decoding analyses were tested 

for a correlation with the position of the voxels along the y axis (Fig. 2b). This was 
done for the food and trinkets categories separately. As the smoothing applied to 
classification accuracy maps before the second-level analyses artificially inflates 
the strength of any spatial correlation, we generated a more reasonable correlation 
distribution under the null hypothesis by randomly generating noise in the mOFC 
using the same mean and variance as in the empirically observed unsmoothed 
t-scores. We then smoothed this noise and computed the t-score/y-axis  
correlation, repeating this process 10,000 times. A nonparametric P value was 
derived by determining the fraction of randomly generated correlations that 
exceeded the actual correlation.

Ventral-dorsal gradient of value-processing complexity. Three analyses were 
performed to compare univariate and multivariate value signals in the mOFC 
and the mPFC: first, we correlated each voxel’s univariate and within-category 
MVPA t-scores with its position along the z axis (Fig. 4a). This was done for all 
voxels in the mOFC and the mPFC masks together. We generated a null correla-
tion distribution for each combination of category and value-coding strategy by 
randomly generating correlations from simulated data generated using the pro-
cess described above. The null correlation distribution defines a nonparametric  
P value as the proportion of randomly generated correlations that exceed the 
empirically observed correlation scores. As we sought to determine whether or not 
the univariate and distributed coding strengths were differentially correlated with 
the z axis, we also derived confidence intervals around the respective correlation 
estimations via bootstrapping60. That is, 10,000 samples were randomly gener-
ated with replacement and a sampling distribution estimated for each category 
and value-coding strategy. From this sampling distribution, we can establish the 
range of values that the actual correlations might take (within an error probability 
thresholded at P < 0.05).

Second, we examined how voxel preference for multivariate or univariate cod-
ing of value changes along an inferior-superior axis. To do this, we extracted 
the t-scores obtained in the second-level analyses for the univariate and within-
category MVPA value analyses for all voxels in each mask; then, for each voxel, 
we subtracted the univariate t-score from the MVPA t-score, which resulted in 
a single parameter indicative of that voxel’s relative preference for the multivari-
ate or univariate encoding of value. This was done for all voxels in the mPFC 
and the mOFC separately (Fig. 4b). These samples were tested using two-sided 
repeated measures t-tests.

In our third test, we correlated the second-level t-scores from the univari-
ate and within-category MVPA value analyses on a voxel-by-voxel basis in 
each region. Again, this procedure was implemented for the food and trinkets  
categories separately. As the number of voxels in each vmPFC subdivision was 
different, we tested differences in correlations using a bootstrap procedure60.  
For each combination of stimulus category and vmPFC subdivision,  
we resampled 348 data points of interest with replacement (corresponding to 
the number of voxels in the larger mOFC mask) and computed the correlation. 
In this way, 10,000 correlation coefficients were generated (Fig. 3b) giving an 
estimate of the empirical distribution.
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