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abstract  This paper reviews what is known about the computa-
tional and neurobiological basis of simple goal-directed choice. 
Two features define this type of choice. First, individuals make 
decisions between stimuli that are associated with different out-
comes or rewards. Second, the brain solves the decision problem 
by (1) computing the distribution of outcomes associated with each 
stimulus, (2) assigning a value to each stimulus equal to the expected 
reward generated by those outcomes, and (3) selecting the stimulus 
with the highest computed value. A typical example of simple goal-
directed choice is given by the problem of choosing a meal from a 
buffet table.

Neuroeconomics studies the computational and neurobio-
logical basis of animal and human decision making. Its 	
goal is to understand how the brain solves the multitude of 
choice problems that organisms face every moment of 	
their existence. One important complication in addressing 
these problems is that decision-making situations come in 
many different flavors, and it is likely that the brain uses 
different computations and systems to solve them. Compare, 
for example, the problem of a lion chasing a gazelle with 	
the problem of a typical consumer deciding which of 	
two cereal boxes to purchase. Both organisms are engaged 
in decision making, but their problems are very different. 
The problem of the lion is to select a direction of movement 
every instant to increase the probability of catching the 
gazelle. This entails a simple goal (“catch the gazelle”), but 
a series of action choices. In contrast, the consumer faces a 
complicated choice between goals (“which cereal box has 
the best taste-health-price combination?”), but once that 
decision has been made, the choice over actions is trivial 
(“pick the motor plan that grabs the chosen cereal box”). 
Given this complexity, an important task for neuroeconom-
ics is the construction of a neurally relevant taxonomy of 
choice tasks that can be used to guide the research and to 
organize the findings.

Another difficulty in neuroeconomics is that there does 
not seem to be a simple one-to-one mapping between 	
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decision-making situations and the neural processes used to 
make choices. Instead, a sizable and rapidly growing body 
of animal and human evidence suggests that there are at 
least three conceptually and neurally separable behavioral 
controllers at work in most decision-making situations: a 
Pavlovian system, a habitual system, and a goal-directed 
system (Balleine, Daw, & O’Doherty, 2008; Daw, Niv, & 
Dayan, 2005; Dayan, 2008; Dickison & Balleine, 2002; 
Rangel, Camerer, & Montague, 2008). Although this topic 
is just beginning to be explored, the existing evidence sug-
gests that the relative importance of the systems changes 
with the details of the decision-making situation. Given these 
two complications, it is unlikely that we will find a simple 
neuroeconomic theory of decision making that covers all 
types of choice situations.

In order to deal with these two complications, research in 
neuroeconomics typically focuses its attention on a subset of 
the behavioral controllers and a well-defined subclass of 
choice problems. In this chapter we review what is known 
about a class of problems that has received considerable 
attention in neuroeconomics and behavioral neuroscience: 
How does the goal-directed system make choices among sets 
of stimuli associated with different rewards? We refer to this 
problem as simple goal-directed choice. The decision-making 
situations of interest resemble the example of the consumer 
who has to choose one type of cereal among several options. 
The consumer cares about which choice he makes because 
the different stimuli are associated with different combina-
tions of outcomes (or rewards). For example, one cereal box 
might be tastier and cheaper than another. It is important 
to emphasize that animals also engage in this type of choice. 
As an example, consider the problem of a rat that has to 
press a left or a right lever on a Skinner box in order to 
obtain one of two rewards, or the problem of a hungry lion 
confronted with several gazelles.

The review has several goals. First, we show that several 
choice tasks that have been used in the neuroscience 	
and animal learning literatures are special cases of simple 	
goal-directed choice. Second, we provide a mathematical 
description of the computations that define the goal-directed 
system. Third, we use the computational framework as a 
way to organize what is known about the neurobiology of 
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the goal-directed system and what are some of the most 
important open questions.

Simple binary stimulus choice: A behavioral paradigm to 
study simple goal-directed choice

In a simple binary stimulus-choice task, individuals make 
repeated choices between pairs of stimuli that are presented 
to them, one on the left and one on the right. Individuals 
care about their choice because the stimuli are associated 
with different outcomes (or rewards) that affect their well-
being. They indicate their choice by executing one of two 
different actions associated with each of the stimuli (e.g., a 
left or a right button push, a left or a right saccade, etc.). 
The actions are such that the costs and effort required to 
execute them are as similar as possible.

A typical example of such a task is depicted in figure 74.1A 
(Karjbich, Armel, & Rangel, 2008). Individuals are shown 
pairs of high-resolution pictures of familiar snack-food items 
in a computer monitor and have to choose which one they 
would like to consume at the end of the experiment by press-
ing either a left or a right button. There are 70 different such 
stimuli that are randomly assigned into pairs in 100 different 
trials. At the end of the experiment, one of the trials is 
selected at random, and the subject eats the food depicted 
in the picture that he chose in that trial. Another example 
is shown in figure 74.1B (Baxter & Murray, 2002). During 
an initial training phase, monkeys are exposed to 120 objects 
of different shape and color, two at a time. Importantly, 60 
of the objects are associated with a food reward (half with a 
cherry and half with a peanut) that is placed below the 
object, whereas the other 60 objects are associated with no 
such reward. The goal of this phase is for animals to learn 
to associate the 30 cherry objects with the consumption of a 
cherry and the 30 peanut objects with the consumption of a 
peanut. During a second training phase, the animals are 
repeatedly presented with one cherry object and one peanut 
object, and are taught to make a choice by lifting only one 
of the objects and grabbing the reward underneath. The 
location of the objects is fully randomized. After the animals 
are fully trained, they are tested in one of three conditions: 
(1) sessions that are preceded by feeding to satiety with cher-
ries, (2) sessions that are preceded by feeding to satiety with 
peanuts, and (3) sessions with no prefeeding.

Note some of the central elements of the simple binary 
stimulus-choice task. First, there are at least 2 stimuli that 
the subjects choose from, although the set may be much 
larger. For later reference, let S denote the set of stimuli and 
s denote a typical element. Second, each stimulus is associ-
ated with a probability over outcomes. Let O denote the set 
of potential outcomes, o denote a typical outcome, and p(os) 
denote the probability that the subject gets outcome o if 
stimulus s is chosen. The outcomes can be appetitive (e.g., 

A

B

Figure 74.1  Examples of simple binary stimulus choice tasks. 	
(A) Binary food choice from Karjbich, Armel, and Rangel (2008). 
(B) Devaluation choice task from Izquierdo, Suda, and Murray 
(2004). (With permission from Baxter & Murray, 2002.)
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food) or aversive (e.g., a shock). A stimulus might be paired 
with multiple outcomes. In the simple tasks we have 
described, the stimulus-outcome associations are degenerate 
and time-invariant probability distributions, but we need 	
the more general notation to accommodate other tasks of 
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interest. For example, in reversal-learning tasks the stimu‑	
lus-outcome associations change with time, and thus we 
have to write pt(os). Third, the mapping from stimuli to 
action, denoted by at(s), changes from trial to trial. As a 
result, there is not a fixed mapping between actions and 
stimuli, or actions and outcomes. This approach captures 
the fact that in the real world the actions required to obtain 
a particular stimulus often change over time. Fourth, all the 
actions required to make or implement the choice entail 
approximately the same costs to the individual. An example 
would be a Skinner box with two levers that have equal 
tension, symmetric location, and so on. The property would 
be violated if one of the levers is more difficult to pull. Note 
that in order to keep things simple we make an explicit dis-
tinction between the potential aversive outcomes associated 
with a stimulus (which occur at the time of outcome con-
sumption) and the costs associated with taking the action 
necessary to obtain the stimulus (which occur at the time of 
choice).

Another important feature of the binary stimulus-choice 
task is previous experience consuming all the possible out-
comes in all the states of the world that might be induced 
by the experimenter. To understand why this is important, 
consider the devaluation experiment depicted in figure 
74.1B. Here monkeys are asked to make choices among 
stimuli in three different states of the world: a cherries-	
satiation condition, a peanut-satiation condition, and a 	
no-satiation condition. To qualify as a simple binary stimulus-	
choice task, monkeys must have had extensive experience 
consuming the cherries and peanuts in the three states of the 
world prior to the actual experiment. As we will see, the 
choices made by the goal-directed system will depend on 
how it values the outcomes associated with each stimulus 
given the state of the world. If the subjects have not had experi-
ence consuming the outcomes in a particular state, they 
might need to learn how to evaluate them, a phenomenon 
that Balleine has called incentive learning (Balleine & Dick-
inson, 1998). This might result in unstable choices across the 
experiment. The simple binary stimulus-choice paradigm 
removes this complication by requiring that subjects have 
extensive prior experience with all the outcomes in all the 
relevant states of the world.

The other details of the task are not important and can 
take many different forms. For example, the stimuli could 
be pictures on a computer screen, or physical objects with 
different shape and color, or cards with printed photographs 
or verbal descriptions of rewards, or even real exposure to 
the actual outcomes. Subjects might get a reward after every 
decision, or might get rewarded only for a random subset of 
the choices that they made at the end of the trial. There are 
also no constraints on the actions associated with choosing 
a stimulus, as long as they satisfy the equal-cost property. 
Thus subjects might indicate their choice through an eye 

movement and then get the chosen liquid delivered to their 
mouths, or they may indicate their choice through the act 
of reaching for one of the stimuli in order to consume it.

The binary stimulus-choice paradigm outlined here covers 
as special cases several tasks that have been used in the 
neuroscience and animal learning literatures. First are the 
type of simple binary choices described in figure 74.1A 
(Kable & Glimcher, 2007; Karjbich et al., 2008; Padoa-
Schioppa & Assad, 2006, 2008; Tom, Fox, Trepel, & 	
Poldrack, 2007; Wallis & Miller, 2003). Second are 	
the devaluation choice tasks described in figure 74.1B 	
(Izquierdo, Suda, & Murray, 2004; Wellman, Gale, & 
Malkova, 2005). The main differences from the previous 	
set of tasks are that subjects indicate their choice by lifting 
an object, instead of pressing a button or executing a 	
saccade, and that the value of the outcomes is manipulated 
by feeding the subject to satiation on some of the foods. 
Third are reward preference tasks (Izquierdo et al.). The 	
key difference from the previous task is that subjects are 
exposed to the actual rewards, instead of stimuli associated 
with them, and they indicate their choice by reaching for 
the chosen outcome. Fourth are reversal learning tasks 
(Hampton, Bossaerts, & O’Doherty, 2006). In a typical 
version of these tasks there are two stimuli and one potential 
outcome. In every trial the probability of obtaining the 
outcome is high for one of the stimuli and low for the 	
other, and it evolves over time either through either an 
exogenously specified process or as a function of the history 
of choices.

It is important to emphasize that, as general as it is, this 
behavioral paradigm does not cover many decision situa-
tions that have also been used in the literature to study the 
goal-directed system. It rules out the case of multistimulus 
(nonbinary) choice. It also rules out a popular odor discrimi-
nation task from the rat literature (Schoenbaum, Chiba, & 
Gallagher, 1 998) in which rats decide whether or not to 
drink a liquid from a single location based on the odor that 
they receive in an odor port (some odors predict rewards 	
like sugar, others punishers like quinine). Note that instead 
of a choice between stimuli, this task entails choice between 
motor plans with fixed state-dependent action-outcome 	
relationships. More generally, the paradigm also rules out 
any tasks in which there is a constant mapping between 
actions and stimuli or outcomes at each state of the world. 
It also rules out instrumental paradigms in which animals 
engage in free rates of responding, even if they have a 	
choice among multiple responses (Balleine & Dickinson, 
1998; Dayan & Balleine, 2002). This last class of decision 
tasks is substantially more complicated as animals need 	
to decide not only what to choose, but also about when 	
to take action. In contrast, in the binary stimulus-choice 
paradigm the timing of decision making is controlled by the 
experimenter.
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Multiple behavioral controllers: What is  
goal-directed choice?

As mentioned at the beginning of the chapter, a growing 
body of evidence suggests that the brain might deploy dif-
ferent behavioral controllers in parallel in many decision-
making situations. In this section we provide a brief review 
of the computational differences between the three main 
systems that have been identified: a habitual, a goal-directed, 
and a Pavlovian system. For more detailed reviews see 	
Balleine and colleagues (2008), Dayan (2008), and Rangel 
and colleagues (2008).

Goal-Directed System  The defining feature of the goal-
directed system is that it makes choices over stimuli using 
model-based computations of value. These are carried out 
in two steps. First, a value is assigned to each stimulus by 
identifying the distribution of outcomes associated with it 
and computing the expected values of those outcomes in the 
current state of the world. Second, the computed values are 
compared in order to select one of the stimuli.

Note several key properties of this system. First, its goal is 
to make choices over stimuli, not actions. Second, it assigns 
value to stimuli by anticipating the outcomes to which they 
might lead and then computing their expected reward. 
Third, this computation is based on stimulus-outcome asso-
ciations and beliefs about the reward that those outcomes 
are likely to generate in the current state of the world. It 
follows that the computation is model based (sometimes 
called forward looking) and is not based on the historical 
level of payoff generated by the different stimuli. This last 
property gives enormous flexibility to the system, since it 
allows it to rapidly update the value that it assigns to stimuli 
based on either a change on the stimulus-outcome associa-
tions or a change in the state of the world that affects their 
expected value. Fourth, this flexibility comes at the cost of 
computational complexity. The brain needs to store or 
compute stimulus-outcome associations and state-dependent 
value functions, and then needs to carry out expected value 
computations online.

Habitual System  The defining feature of the habit system 
is that it makes choices over actions based on the historical 
level of rewards that they have generated. This is also done 
in two steps. First, a value for each of the available actions 
is retrieved from memory. Second, the retrieved values are 
compared in order to select one of the stimuli.

Note several key properties of this system. First, choice is 
made over actions, not over stimuli. Second, the values used 
to make choices are retrieved from memory, not computed 
online. Third, the values assigned to actions depend on 	
the level of rewards that they have generated in the past. 

Multiple studies have shown that relatively simple reinforce-
ment learning algorithms approximate well the process 	
of value learning for this system (Montague, Dayan, & 
Sejnowski, 1996; Niv & Montague, 2008; Schultz, Dayan, 
& Montague, 1997; Sutton & Barto, 1998). Fourth, the fact 
that the learning can be state sensitive leads to the use of 
state-dependent action values by the habit system. Fifth, the 
computations made by the habitual system at the time of 
choice are simpler than those of the goal-directed system, 
since values are retrieved from memory instead of computed 
online. Sixth, this computational simplicity comes at the cost 
of some behavioral flexibility. Although with enough experi-
ence the habitual system is able to make optimal decisions 
in environments that are sufficiently stable, it cannot do so 
when the action-outcome contingencies are rapidly chang-
ing (as, for example, in the simple experiment described in 
figure 74.1A).

Pavlovian System  In contrast to the previous two systems, 
which are able to assign values to any stimulus or action, the 
Pavlovian system assigns values to a small set of actions 	
that are evolutionarily appropriate responses to particular 
environmental stimuli. Typical examples include preparatory 
behaviors (such as approaching cues that predict the delivery 
of food) and consummatory responses to a reward (such as 
pecking at a food magazine).

Although many Pavlovian behaviors are “hardwired” 
responses to specific predetermined stimuli, with sufficient 
experience animals can also learn to deploy them in response 
to other stimuli. For example, rats and pigeons learn to 
approach lights that predict the delivery of food. At first 
glance, Pavlovian behaviors look like automatic, stimulus-
triggered responses, and not like instances of value-based 
choice processes. However, since Pavlovian responses can 
be interrupted, they must be assigned something akin to a 
“value” so that they can compete with the actions that are 
favored by the other valuation systems.

The computational and neurobiological basis of the 	
Pavlovian system is much less well understood than that 	
of the habitual and the goal-directed systems. For recent 
reviews see Dayan and Seymour (2008) and Rangel and 
colleagues (2008). This lack of understanding is due, in 	
part, to the fact that there might be multiple Pavlovian 	
controllers, some responsible for triggering outcome-specific 
responses (e.g., pecking at food or licking at water) and 
others responsible for triggering more general valence-
dependent responses (e.g., approaching positive outcomes 
and withdrawing from negative ones). Nevertheless, since a 
wide range of human behaviors with important economic 
consequences might be controlled by the Pavlovian system 
(from overeating to the harvesting of immediate smaller 
rewards at the expense of larger delayed rewards), a detailed 
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understanding of this system is an important open question 
for neuroeconomics.

Coexisting and Competing Valuation Systems  All these 
behavioral controllers can potentially be active at the same 
time even in the case of simple binary stimulus choice. 
Consider, for example, the experiment in figure 74.1B. Since 
some of the stimuli covering the food rewards have been 
associated with appetitive outcomes, they might trigger 
Pavlovian approach responses that could influence which of 
the two objects the monkey lifts first. Similarly, since the 
execution of the choice entails two constant motor actions 
(reach for the left object or reach for the right object) and 
the monkeys receive extensive experience in the task, the 
habitual system might use historical action values to influence 
the choice that is made. Finally, the goal-directed system 
could also bias the monkey’s actions by assigning a higher 
value to the actions associated with the higher-value stimulus. 
This possibility leads to a very important open question in 
neuroeconomics about which next to nothing is known: 
How does the brain assign control to the three different 
systems? Although some simple computational models have 
been proposed (Daw et al., 2005; Dayan, Niv, Seymour, & 
Daw, 2006), to date no experiments have been performed 
to study how the systems interact and compete at the neural 
level in simple binary stimulus choice.

In this review we focus on the computations of the goal-
directed system during the simple binary stimulus-choice 
task. We do so not because the effects of the other systems 
in this type of situations are unimportant, but because much 
more is known about the role of the goal-directed system. 
We emphasize, however, that a full understanding of simple 
stimulus choice will require the study of how the other two 
systems are deployed in this type of task and of how the 
allocation of control is resolved.

Computational basis of goal-directed choice in the  
simple binary stimulus-choice paradigm

In this section we provide a mathematical description of the 
computations that the goal-directed system needs to make 
in simple binary stimulus-choice situations.

Representation of the Choice Problem  The first 
problem that the system needs to solve is to identify 	
the parameters of the decision-making problem: What are 
the potential stimuli that could be chosen? What are the 
actions required to obtain each stimulus? What external 	
and internal state variables might affect the desirability of 
the different stimuli and actions? Let e be a summary of 	
the internal and external variables determining the state of 
the world.

This part of the choice process is often ignored in decision-
making models by implicitly assuming that the brain always 
computes these variables correctly. But given the complexity 
of the world, it is likely that the brain relies on computational 
shortcuts. Consider, for example, the problem of a shopper 
in a modern supermarket aisle that contains thousands of 
different products. When confronted with such complexity, 
the brain only evaluates and compares a small subset of the 
possible items. Since an item is chosen only if it is considered, 
the representation step has a large impact on the choice that 
is eventually made. Given the large number of external and 
internal variables that can impact the choice situation, similar 
issues are likely to arise in the identification of the relevant 
states of the world. The algorithms and neural processes 	
at work, as well as the limitations on choice performance 	
to which they lead, are just beginning to be understood 
(Reutskaja, Pulst-Korenhberg, Nagel, Camerer, & Rangel, 
under review). Basic open questions include the following: 
How does the brain determine which actions to assign values 
to and which actions to ignore? Is there a limit to the number 
of options that animals can consider at a time? How are 
internal and external states computed?

Stimulus Valuation  As we saw before, the goal-directed 
system makes choices by assigning values to the different 
stimuli based on the expected value of the outcomes 
associated with them. Let V(se) denote the value of stimulus 
s given the state of the world e. In order to compute this 
value, the system needs two pieces of information: (1) the 
stimulus-outcome associations, which are summarized by 
the function q(os) specifying the probability that every 
potential outcome o occurs as a function of the stimulus s, 
and (2) the value function v(oe) specifying the value of each 
outcome given the state of the world.

Note several things about this notation. First, there is a 
difference between the p(os) function that describes the 
objective mapping between stimulus and outcomes and the 
q(os) function that describes the beliefs of the subject about 
that relationship. Second, by assumption, the stimulus-
outcome associations do not depend on the state of the 
world, and, for simplicity, we assume that the subjects always 
know this fact. Third, the value function v(oe) is the goal-
directed system’s belief about the reward that it will experi-
ence if the outcome occurs, which is a different signal than 
the level of reward that actually occurs at the time of con-
sumption. Fourth, the value function v(oe) does not depend 
on the stimulus. The reason is that there is a conceptual 
distinction between the (positive or negative) outcomes 	
generated by an stimulus and the costs of taking the action 
necessary to get that stimulus.

The value assigned to a stimulus is simply the expected 
value of the outcomes to which it might lead. This is given by

2
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Stimulus Choice  The brain uses the net-value information 
to make a choice between the stimuli. A sizable amount of 
behavioral evidence suggests that the maximization process 
is stochastic and well approximated by a soft-max process in 
which the probability of choosing stimulus s is given by
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where t is a coefficient measuring the sensitivity of the 
choices to the stimulus values (when t = 0 each alternative 
is chosen with equal probability regardless of the values, and 
for sufficiently large t almost all of the probability falls on 
the item with the highest value).

The soft-max model is a reduced-form model of limited 
use for neuroeconomics, since it describes how the probabil-
ity of making a choice changes with the net values, but not 
how the choice is actually made. A large research effort 	
is devoted to this problem (for recent reviews see Bogacz, 

2007; Busemeyer & Johnson, 2004; Ditterich, 2006; Gold & 
Shadlen, 2007; Rangel, 2008). Most of the models that have 
been proposed are versions of a race-to-barrier diffusion 
process. A simple version of the model for the case of two 
alternatives is depicted in figure 74.2A. The model has 
several components. First, there are circuits that compute 
the value of each of the items. The value assigned to the 
items is assumed to fluctuate stochastically from instant to 
instant. Every instant, the two value signals are subtracted 
to produce a relative-value signal that is then fed to an inte-
grator circuit that computes the value of item 1 minus the 
value of item 2, thus keeping track of the accumulated rela-
tive signal. A decision is made when this relative-value signal 
becomes sufficiently large (“choose item 1 ”) or sufficiently 
negative (“choose item 2”).

This class of models has several attractive features. First, 
they predict a logistic choice function similar to the one 
generated by the soft-max model. Second, they predict that 
the time required to make a choice should be larger when 
items have similar values than when the values are far apart. 

Figure 74.2  Models of the value comparison process. (A) Illustra-
tion of the main components of the race-to-barrier models. (Adapted 
with permission from Bogacz, 2007.) (B) A typical run of the 
random walk model. The step function represents the accumulated 
relative value of the “right” target. The process starts at a middle 
point and stops the first time this variable crosses one of the thresh-

olds (depicted by the bracketed horizontal lines). “Right” is chosen 
when it crosses the upper threshold; “left” is chosen when it crosses 
the lower one. Time advances in discrete steps. The size of every 
step is given by a Gaussian distribution with a mean that is pro-
portional to the true direction of motion. This noise is meant to 
capture the variability in the valuation processes.
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Both predictions are consistent with a large body of behav-
ioral data. Finally, the model makes useful predictions about 
which kind of computations should be implemented by the 
brain: there should be circuits computing the value of each 
stimulus, circuits computing relative values, an integrator 
circuit, and a circuit that triggers a choice when a barrier is 
crossed.

These models assume that a choice is first made over 
stimuli and that the choice is then implemented by deploying 
the action that leads to that stimulus. We refer to these types 
of models as stimulus-based choice. Another a priori equally 
plausible theory (Glimcher, Dorris, & Bayer, 2005) specifies 
that the brain uses the stimulus values to assign a value to 
every feasible action, and that it then makes the choice 
through a process of competition over action plans. We refer 
to this possibility as action-based choice. It is difficult to compare 
these two views on theoretical grounds, since the race-	
to-barrier models apply well to both types of choice. Thus 
novel experiments are needed to address this issue. The 
question is important because the neural systems involved in 
making the choice are likely to be different in the case of 
stimulus- and action-based choice.

Learning  In some versions of the simple binary stimulus-
choice paradigm, subjects receive an outcome after every 
choice. This provides them with feedback that can be used 
to update their estimate of the stimulus-outcome associations. 
Here we propose a simple algorithm that subjects can use to 
carry out this type of learning.

We assume that the experimental task is structured as 
follows. Every experimental trial t begins with the revelation 
of the current state of the world (et). A stimulus st is then 
chosen that leads to the set of outcomes Ot and a level of 
reward rt.

We assume that learning takes place in two stages. In the 
first stage a prediction error is computed for every possible 
outcome in the set O. These prediction errors are given by

δ t
O

t to I q o s( ) = − ( )
where I0 is an indicator function taking a value of 1  if the 
outcome in question occurs and a value of zero otherwise. 
Note that positive prediction errors measure the degree to 
which the occurrence of an outcome was surprising, and 
negative prediction errors measure the extent to which the 
nonoccurrence of the other outcomes was surprising. In 	
the second stage the prediction errors are used to update the 
state-outcome probability function for that stimulus by

q o s q o s ot t t t t+ ( ) = ( ) + ( )� λδ
where l is a learning rate between 0 and 1 that affects the 
speed of learing.

Note that this formulation assumes that only the beliefs 
for the stimulus that was chosen are updated. This approach 
assumes a very strong form of discrete learning, an assump-

tion which is plausible in environments where there are a 
small number of highly dissimilar stimuli but not in domains 
in which “similar” stimuli have “similar” stimulus-outcome 
associations. In the later case, the outcome in one state can 
provide information about the stimulus-outcome associa-
tions for other states. The extent to which the goal-directed 
system engages in this type of generalization is largely 
unknown.

Neurobiological basis of goal-directed choice in the simple 
binary stimulus-choice paradigm

In this section we review some of what is known about how 
the brain implements the computations described in the 
previous section and highlight some important open ques-
tions. For alternative recent reviews see Balleine and col-
leagues (2008), Rangel (2008), Rangel and colleagues (2008), 
and Wallis (2007).

Representation  Unfortunately, next to nothing is known 
about this important step in the decision-making process. 
Open questions of particular interest include the following. 
How does the brain know when to activate the goal-directed 
evaluation and comparison circuitry? How does the brain 
decide which stimuli to evaluate at any given moment? 
Which aspects of the state of the world are measured, and 
how are they encoded by the goal-directed evaluation 
circuitry? The first question is important because organisms 
are exposed to potential choice stimuli continuously, but the 
goal-directed choice might only engage in the process of 
choice sporadically. The second question is important 
because often there are many potential stimuli and the 
system might not have the capacity to evaluate all of them 
fully. Think, for example, of a consumer in a modern 
supermarket aisle.

Stimulus Valuation  Several papers have found neural 
correlates of the stimulus-value signal (V(se)). Plassmann, 
O’Doherty, and Rangel (2007) investigated the neural 
correlates of stimulus valuation by the goal-directed system 
in humans using fMRI. They showed pictures of desirable 
snacks to hungry subjects who had to place bids for the right 
to eat them at the end of the experiment. The size of the 
bids was a measure of the value assigned by the brain to each 
stimulus at the time of choice and positively correlated with 
BOLD activity in the mOFC and the dorsolateral prefrontal 
cortex (DLPFC). (For related fMRI findings see Arana et al., 
2003; Erk, Spitzer, Wunderlich, Galley, & Walter, 2002; 
Hare, O’Doherty, Camerer, Schultz, & Rangel, 2008; Paulus 
& Frank, 2003; Tom et al., 2007; Valentin, Dickinson, & 
O’Doherty, 2007).

A related study used single-unit electrophysiology in non-
human primates to look for activity in the orbitofrontal 
cortex that correlates with stimulus values (Padoa-Schioppa 
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& Assad, 2006, 2008). Every trial, thirsty animals were given 
a choice between two stimuli associated with small magni-
tudes of two different juices. After a period of deliberation, 
the animals indicated their choice with a left-or-right eye 
movement. The action associated with each stimulus varied 
from trial to trial. The authors estimated a logistic-choice 
model to compute a measure of value for each juice-amount 
combination that was then correlated with the neural signals. 
They found a large population of neurons encoding the 
value of the stimulus associated with each juice indepen-
dently of the action that it took to get it. They did not find 
an equivalent population encoding the value of the actions. 
A closely related study recorded simultaneously from monkey 
OFC and DLPFC and found neurons encoding for the value 
of stimuli in both areas, although the value signal arose in 
DLPFC with a delay of approximately 1 00 ms (Wallis & 
Miller, 2003).

The previous studies looked for stimulus-value signals in 
the case in which animals made choices between appetitive 
items. An important question is whether the brain uses the 
same networks to evaluate stimuli associated with aversive 
items (e.g., choosing which of two undesirable risks to take). 
Plassmann, O’Doherty, and Rangel (2008) used an experi-
mental design similar to the one we have described to study 
this question. Subjects were shown pictures of undesirable 
food items (e.g., canned vegetables) and had to bid to avoid 
having to eat them. The bids were a measure of the extent 
to which they disliked the foods. Interestingly, no areas 
exhibited a positive and significant correlation with this 
measure of stimulus value. Instead, the study found that 
activity in the mOFC and the DLPFC were negatively 	
correlated with the bids. This finding suggests that these 	
two structures play a role in the valuation of both appetitive 
and aversive items, in the appetitive case through increased 
activity and in the aversive case through decreased 
activity.

Interestingly, given that the V(se) function is a forecast of 
the actual value of consuming the objects associated with the 
stimuli, activity in the OFC has also been shown to be cor-
related with the value of expected outcomes in the absence 
of choice. For example, Gottfried, O’Doherty, and Dolan 
(2003) presented subjects with visual stimuli that were paired 
with different odors and used a devaluation procedure to 
manipulate the value of some of the odors. Using human 
fMRI, they found that activity in amygdala and OFC was 
consistent with the encoding of the expected odor value 	
at the time of cue presentation (prior to the actual odor 
delivery). (For related human fMRI studies see Gottfried, 
O’Doherty, & Dolan, 2002; Nobre, Coull, Frith, & Mesulam, 
1999; O’Doherty, Deichmann, Critchley, & Dolan, 2002). 
These findings, together with the ones for goal-directed 
choice described previously, suggest that the OFC might be 
involved in the computation of different types of value signals 

at different stages of the choice process and in different types 
of tasks.

In all the previous experiments, there were no costs associ-
ated with choosing an item. Hare and colleagues (2008) 
studied a simple choice paradigm in which subjects had to 
make a decision about whether or not to buy a food snack 
at a given price. In this case, acquiring the stimulus entailed 
a cost equal to a loss of money given by the price. Consistent 
with the studies described before, they found that the value 
of the foods correlated with activity in the medial OFC, 	
but that the price was not encoded in this area. Instead, a 
“consumer surplus” signal, equal to the value of the item 
minus its price, was found in the central OFC. These results 
suggest that the medial OFC might be involved in the encod-
ing of stimulus value but is not responsive to the costs of 
acquiring the item.

A difficulty in identifying areas where stimulus values 
might be encoded is that these signals are most likely posi-
tively correlated with other signals that are not part of the 
goal-directed-system valuation process. Consider several 
examples that have caused some confusion in the literature. 
First, exposure to stimuli with very positive or very negative 
stimulus values might induce an increase in arousal in 
systems associated with motor preparation. If the experi-
mental condition only includes appetitive items, the arousal 
and stimulus-value signals will be perfectly correlated, and 
thus one might misattribute one type of signal for the other. 
As proposed by Roesch and Olson (2004), one way of dis-
sociating the two signals is to include both appetitive and 
aversive items in the experiment: neural value signals increase 
linearly with stimulus value, whereas arousal signals are cor-
related with the absolute value of the stimulus value. Using 
this logic in a monkey electrophysiology experiment, Roesch 
and Olson found that activity in OFC reflected the stimulus 
value, whereas activity in premotor cortex reflected an 
arousal-type variable. Second, similar to the case of arousal, 
exposure to stimuli with very positive or very negative stimu-
lus values might induce an overall increase in attention. 
Third, in many choice paradigms, goal values and reward 
prediction errors are positively correlated (even if the design 
includes both appetitive and aversive items). Hare and col-
leagues (2008) show that prediction errors and stimulus 
values can be dissociated by introducing a random monetary 
prize in every trial that is independent of the choices made 
by the subjects. Using this experimental trick, they found 
that BOLD activity in the medial OFC, but not ventral 
striatum, was correlated with the stimulus values, whereas 
activity in the ventral striatum was most consistent with the 
prediction error signal.

Why is medial OFC involved in the computation of stimu-
lus values? Some authors have argued that this area of the 
prefrontal cortex might be in a unique position to integrate 
information about stimuli and states of the word into a value 
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(Schoenbaum, Roesch, & Stalnaker, 2006; Wallis, 2007). 
This favorable position is due to its multiple connections 
with limbic areas such as the thalamus, amygdala, and stria-
tum (Carmichael & Price, 1996; Ongur & Price, 2000).

So far we have focused on the neural basis of the stimulus-
value signal. This signal represents only the output of the 
valuation process. As described in the previous section, these 
values are constructed by either retrieving or computing 
stimulus-outcome associations [the p(os) functions], by 
retrieving or computing the value associated with each of 
those outcomes in the current state of the world [the v(oe) 
function], and by integrating them into an expected value 
signal [the V(se) stimulus value]. This analysis gives rise to 
the following important questions: How and where are the 
stimulus-outcome associations represented? How and where 
is the v(oe) valuation function represented, and how does 
the state of the world modulate its value? How and where 
are the two of them integrated into the stimulus value signal? 
The answers to these questions are largely unknown and 
constitute one of the most important open problems in 
neuroeconomics.

Stimulus Choice  Although several proposals have been 
made about how the brain compares options in simple 
stimulus-choice situations (Glimcher et al., 2005; Wallis, 
2007), next to nothing is known about this is actually done. 
Understanding how the goal-directed systems compare the 
stimulus values to make a choice is another important open 
problem in neuroeconomics. Other open questions include 
the following: Does the brain make choices by implementing 
a race-to-barrier model? If so, is the choice made over 
actions or stimuli? How are the barriers chosen and imple
mented? How does the slope of the integrators relate to the 
strength of the stimulus-value signal encoded in medial 
OFC? Are there other inputs to the comparison process 
besides the medial OFC signal? How and where does the 
brain incorporate information about the cost of acquiring 
the different stimuli? How does the system go from stimulus 
choices to motor responses?

Learning  There is a large literature in neuroeconomics 
showing that reward prediction errors are encoded in the 
ventral striatum in the context of Pavlovian (nonchoice) and 
habitual choice paradigms (for a comprehensive review see 
Niv & Montague, 2008). Unfortunately, this literature is not 
very informative about the learning that takes place in the 
goal-directed system during the simple stimulus-choice task. 
The reason is that the prediction errors required here 
measure how surprising the occurrence of individual 
outcomes is, as opposed to prediction errors of reward that 
measure the amount of unexpected reward received at the 
time of consumption. These are two very different types 	
of learning and are likely to be implemented by different 

networks. Understanding the computational and neuro
biological basis of how the goal-directed system learns 
stimulus-outcome associations is another important open 
question for neuroeconomics.

Conclusions

The goal-directed system provides organisms with a flexible 
and adaptive tool to make decisions. This is based on its 
ability to assign values to stimuli based on beliefs about the 
outcomes that they are likely to generate and the value of 
those outcomes in the current state of the world. The system 
might be particularly powerful through its interactions with 
other higher cognitive processes that might allow it to use 
analytical and memory processes to improve its character-
ization of the stimulus-outcome associations. Given that the 
system is thought to play a large role in human decision 
making, understanding its computational and neurobiologi-
cal basis is central to understanding the essence of human 
nature.

This review has emphasized the use of simple mathemati-
cal models to describe the computations that the goal-
directed system needs to carry out in order to make a choice. 
These models are useful because they lay down precise 
descriptions of the computational nature of the problem 
(“what needs to be encoded”) and guide the search for the 
neural instantiation of the process at work. We believe that 
the use of these types of models is critical to the rapid 
advancement of the field.
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