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abstract	 This	paper	reviews	what	is	known	about	the	computa-
tional	 and	 neurobiological	 basis	 of	 simple	 goal-directed	 choice.	
Two	 features	 define	 this	 type	 of	 choice.	 First,	 individuals	 make	
decisions	 between	 stimuli	 that	 are	 associated	 with	 different	 out-
comes	or	rewards.	Second,	 the	brain	solves	 the	decision	problem	
by	(�)	computing	the	distribution	of	outcomes	associated	with	each	
stimulus,	(2)	assigning	a	value	to	each	stimulus	equal	to	the	expected	
reward	generated	by	those	outcomes,	and	(3)	selecting	the	stimulus	
with	the	highest	computed	value.	A	typical	example	of	simple	goal-
directed	choice	is	given	by	the	problem	of	choosing	a	meal	from	a	
buffet	table.

Neuroeconomics	 studies	 the	 computational	 and	 neurobio-
logical	 basis	 of	 animal	 and	 human	 decision	 making.	 Its		
goal	is	to	understand	how	the	brain	solves	the	multitude	of	
choice	 problems	 that	 organisms	 face	 every	 moment	 of		
their	 existence.	One	 important	 complication	 in	addressing	
these	 problems	 is	 that	 decision-making	 situations	 come	 in	
many	 different	 flavors,	 and	 it	 is	 likely	 that	 the	 brain	 uses	
different	computations	and	systems	to	solve	them.	Compare,	
for	 example,	 the	 problem	 of	 a	 lion	 chasing	 a	 gazelle	 with		
the	 problem	 of	 a	 typical	 consumer	 deciding	 which	 of		
two	cereal	boxes	to	purchase.	Both	organisms	are	engaged	
in	 decision	 making,	 but	 their	 problems	 are	 very	 different.	
The	problem	of	the	lion	is	to	select	a	direction	of	movement	
every	 instant	 to	 increase	 the	 probability	 of	 catching	 the	
gazelle.	This	entails	a	simple	goal	(“catch	the	gazelle”),	but	
a	series	of	action	choices.	In	contrast,	the	consumer	faces	a	
complicated	 choice	 between	 goals	 (“which	 cereal	 box	 has	
the	 best	 taste-health-price	 combination?”),	 but	 once	 that	
decision	 has	 been	 made,	 the	 choice	 over	 actions	 is	 trivial	
(“pick	 the	 motor	 plan	 that	 grabs	 the	 chosen	 cereal	 box”).	
Given	this	complexity,	an	important	task	for	neuroeconom-
ics	 is	 the	 construction	 of	 a	 neurally	 relevant	 taxonomy	 of	
choice	 tasks	 that	can	be	used	 to	guide	 the	research	and	to	
organize	the	findings.

Another	 difficulty	 in	 neuroeconomics	 is	 that	 there	 does	
not	 seem	 to	 be	 a	 simple	 one-to-one	 mapping	 between		

�

decision-making	situations	and	the	neural	processes	used	to	
make	choices.	Instead,	a	sizable	and	rapidly	growing	body	
of	 animal	 and	 human	 evidence	 suggests	 that	 there	 are	 at	
least	 three	 conceptually	 and	 neurally	 separable	 behavioral	
controllers	 at	 work	 in	 most	 decision-making	 situations:	 a	
Pavlovian	 system,	 a	 habitual	 system,	 and	 a	 goal-directed	
system	 (Balleine,	 Daw,	 &	 O’Doherty,	 2008;	 Daw,	 Niv,	 &	
Dayan,	 2005;	 Dayan,	 2008;	 Dickison	 &	 Balleine,	 2002;	
Rangel,	Camerer,	&	Montague,	2008).	Although	this	topic	
is	 just	beginning	to	be	explored,	 the	existing	evidence	sug-
gests	 that	 the	 relative	 importance	 of	 the	 systems	 changes	
with	the	details	of	the	decision-making	situation.	Given	these	
two	 complications,	 it	 is	 unlikely	 that	 we	 will	 find	 a	 simple	
neuroeconomic	 theory	 of	 decision	 making	 that	 covers	 all	
types	of	choice	situations.

In	order	to	deal	with	these	two	complications,	research	in	
neuroeconomics	typically	focuses	its	attention	on	a	subset	of	
the	 behavioral	 controllers	 and	 a	 well-defined	 subclass	 of	
choice	problems.	In	 this	chapter	we	review	what	 is	known	
about	 a	 class	 of	 problems	 that	 has	 received	 considerable	
attention	 in	neuroeconomics	 and	behavioral	neuroscience:	
How	does	the	goal-directed	system	make	choices	among	sets	
of	stimuli	associated	with	different	rewards?	We	refer	to	this	
problem	as	simple	goal-directed	choice.	The	decision-making	
situations	of	interest	resemble	the	example	of	the	consumer	
who	has	to	choose	one	type	of	cereal	among	several	options.	
The	consumer	cares	about	which	choice	he	makes	because	
the	different	stimuli	are	associated	with	different	combina-
tions	of	outcomes	(or	rewards).	For	example,	one	cereal	box	
might	be	tastier	and	cheaper	 than	another.	It	 is	 important	
to	emphasize	that	animals	also	engage	in	this	type	of	choice.	
As	 an	 example,	 consider	 the	 problem	 of	 a	 rat	 that	 has	 to	
press	 a	 left	 or	 a	 right	 lever	 on	 a	 Skinner	 box	 in	 order	 to	
obtain	one	of	two	rewards,	or	the	problem	of	a	hungry	lion	
confronted	with	several	gazelles.

The	review	has	several	goals.	First,	we	show	that	several	
choice	 tasks	 that	 have	 been	 used	 in	 the	 neuroscience		
and	 animal	 learning	 literatures	 are	 special	 cases	 of	 simple		
goal-directed	 choice.	 Second,	 we	 provide	 a	 mathematical	
description	of	the	computations	that	define	the	goal-directed	
system.	 Third,	 we	 use	 the	 computational	 framework	 as	 a	
way	 to	organize	what	 is	 known	about	 the	neurobiology	of	
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the	 goal-directed	 system	 and	 what	 are	 some	 of	 the	 most	
important	open	questions.

Simple binary stimulus choice: A behavioral paradigm to 
study simple goal-directed choice

In	 a	 simple	 binary	 stimulus-choice	 task,	 individuals	 make	
repeated	choices	between	pairs	of	stimuli	that	are	presented	
to	 them,	one	on	 the	 left	 and	one	on	 the	 right.	 Individuals	
care	 about	 their	 choice	 because	 the	 stimuli	 are	 associated	
with	 different	 outcomes	 (or	 rewards)	 that	 affect	 their	 well-
being.	They	 indicate	 their	 choice	by	executing	one	of	 two	
different	actions	associated	with	each	of	 the	stimuli	 (e.g.,	a	
left	 or	 a	 right	 button	 push,	 a	 left	 or	 a	 right	 saccade,	 etc.).	
The	 actions	 are	 such	 that	 the	 costs	 and	 effort	 required	 to	
execute	them	are	as	similar	as	possible.

A	typical	example	of	such	a	task	is	depicted	in	figure	74.�A	
(Karjbich,	Armel,	&	Rangel,	2008).	 Individuals	are	 shown	
pairs	of	high-resolution	pictures	of	familiar	snack-food	items	
in	a	computer	monitor	and	have	to	choose	which	one	they	
would	like	to	consume	at	the	end	of	the	experiment	by	press-
ing	either	a	left	or	a	right	button.	There	are	70	different	such	
stimuli	that	are	randomly	assigned	into	pairs	in	�00	different	
trials.	 At	 the	 end	 of	 the	 experiment,	 one	 of	 the	 trials	 is	
selected	at	random,	and	the	subject	eats	 the	 food	depicted	
in	the	picture	that	he	chose	 in	that	 trial.	Another	example	
is	shown	in	figure	74.�B	 (Baxter	&	Murray,	2002).	During	
an	initial	training	phase,	monkeys	are	exposed	to	�20	objects	
of	different	shape	and	color,	two	at	a	time.	Importantly,	60	
of	the	objects	are	associated	with	a	food	reward	(half	with	a	
cherry	 and	 half	 with	 a	 peanut)	 that	 is	 placed	 below	 the	
object,	whereas	the	other	60	objects	are	associated	with	no	
such	reward.	The	goal	of	this	phase	is	for	animals	to	learn	
to	associate	the	30	cherry	objects	with	the	consumption	of	a	
cherry	and	the	30	peanut	objects	with	the	consumption	of	a	
peanut.	 During	 a	 second	 training	 phase,	 the	 animals	 are	
repeatedly	presented	with	one	cherry	object	and	one	peanut	
object,	and	are	taught	to	make	a	choice	by	lifting	only	one	
of	 the	 objects	 and	 grabbing	 the	 reward	 underneath.	 The	
location	of	the	objects	is	fully	randomized.	After	the	animals	
are	fully	trained,	they	are	tested	in	one	of	three	conditions:	
(�)	sessions	that	are	preceded	by	feeding	to	satiety	with	cher-
ries,	(2)	sessions	that	are	preceded	by	feeding	to	satiety	with	
peanuts,	and	(3)	sessions	with	no	prefeeding.

Note	 some	 of	 the	 central	 elements	 of	 the	 simple	 binary	
stimulus-choice	 task.	First,	 there	 are	 at	 least	 2	 stimuli	 that	
the	 subjects	 choose	 from,	 although	 the	 set	 may	 be	 much	
larger.	For	later	reference,	let	S	denote	the	set	of	stimuli	and	
s	denote	a	typical	element.	Second,	each	stimulus	is	associ-
ated	with	a	probability	over	outcomes.	Let	O	denote	the	set	
of	potential	outcomes,	o	denote	a	typical	outcome,	and	p(os)	
denote	 the	 probability	 that	 the	 subject	 gets	 outcome	 o	 if	
stimulus	 s	 is	chosen.	The	outcomes	can	be	appetitive	 (e.g.,	

A

B

Figure	 74.�	 Examples	 of	 simple	 binary	 stimulus	 choice	 tasks.		
(A)	Binary	food	choice	from	Karjbich,	Armel,	and	Rangel	(2008).	
(B)	 Devaluation	 choice	 task	 from	 Izquierdo,	 Suda,	 and	 Murray	
(2004).	(With	permission	from	Baxter	&	Murray,	2002.)

7

food)	or	aversive	(e.g.,	a	shock).	A	stimulus	might	be	paired	
with	 multiple	 outcomes.	 In	 the	 simple	 tasks	 we	 have	
described,	the	stimulus-outcome	associations	are	degenerate	
and	 time-invariant	 probability	 distributions,	 but	 we	 need		
the	 more	 general	 notation	 to	 accommodate	 other	 tasks	 of	
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interest.	For	 example,	 in	 reversal-learning	 tasks	 the	 stimu-	
lus-outcome	 associations	 change	 with	 time,	 and	 thus	 we	
have	 to	 write	 pt(os).	 Third,	 the	 mapping	 from	 stimuli	 to	
action,	 denoted	 by	 at(s),	 changes	 from	 trial	 to	 trial.	 As	 a	
result,	 there	 is	 not	 a	 fixed	 mapping	 between	 actions	 and	
stimuli,	 or	 actions	 and	 outcomes.	 This	 approach	 captures	
the	fact	that	in	the	real	world	the	actions	required	to	obtain	
a	particular	stimulus	often	change	over	time.	Fourth,	all	the	
actions	 required	 to	 make	 or	 implement	 the	 choice	 entail	
approximately	the	same	costs	to	the	individual.	An	example	
would	 be	 a	 Skinner	 box	 with	 two	 levers	 that	 have	 equal	
tension,	symmetric	location,	and	so	on.	The	property	would	
be	violated	if	one	of	the	levers	is	more	difficult	to	pull.	Note	
that	in	order	to	keep	things	simple	we	make	an	explicit	dis-
tinction	between	the	potential	aversive	outcomes	associated	
with	 a	 stimulus	 (which	 occur	 at	 the	 time	 of	 outcome	 con-
sumption)	 and	 the	 costs	 associated	 with	 taking	 the	 action	
necessary	to	obtain	the	stimulus	(which	occur	at	the	time	of	
choice).

Another	 important	 feature	of	 the	binary	stimulus-choice	
task	 is	previous	experience	consuming	all	 the	possible	out-
comes	 in	all	 the	 states	of	 the	world	 that	might	be	 induced	
by	the	experimenter.	To	understand	why	this	is	important,	
consider	 the	 devaluation	 experiment	 depicted	 in	 figure	
74.�B.	 Here	 monkeys	 are	 asked	 to	 make	 choices	 among	
stimuli	 in	 three	 different	 states	 of	 the	 world:	 a	 cherries-	
satiation	 condition,	 a	 peanut-satiation	 condition,	 and	 a		
no-satiation	condition.	To	qualify	as	a	simple	binary	stimulus-	
choice	 task,	 monkeys	 must	 have	 had	 extensive	 experience	
consuming	the	cherries	and	peanuts	in	the	three	states	of	the	
world	 prior	 to	 the	 actual	 experiment.	 As	 we	 will	 see,	 the	
choices	 made	 by	 the	 goal-directed	 system	 will	 depend	 on	
how	 it	 values	 the	 outcomes	 associated	 with	 each	 stimulus	
given the state of the world.	If	the	subjects	have	not	had	experi-
ence	 consuming	 the	 outcomes	 in	 a	 particular	 state,	 they	
might	need	to	learn	how	to	evaluate	them,	a	phenomenon	
that	Balleine	has	called	incentive	learning	(Balleine	&	Dick-
inson,	�998).	This	might	result	in	unstable	choices	across	the	
experiment.	 The	 simple	 binary	 stimulus-choice	 paradigm	
removes	 this	 complication	 by	 requiring	 that	 subjects	 have	
extensive	prior	experience	with	all	 the	outcomes	 in	all	 the	
relevant	states	of	the	world.

The	other	details	of	 the	 task	are	not	 important	and	can	
take	many	different	 forms.	For	 example,	 the	 stimuli	 could	
be	pictures	on	a	computer	 screen,	or	physical	objects	with	
different	shape	and	color,	or	cards	with	printed	photographs	
or	verbal	descriptions	of	rewards,	or	even	real	exposure	to	
the	actual	outcomes.	Subjects	might	get	a	reward	after	every	
decision,	or	might	get	rewarded	only	for	a	random	subset	of	
the	choices	that	they	made	at	the	end	of	the	trial.	There	are	
also	no	constraints	on	the	actions	associated	with	choosing	
a	 stimulus,	 as	 long	 as	 they	 satisfy	 the	 equal-cost	 property.	
Thus	 subjects	 might	 indicate	 their	 choice	 through	 an	 eye	

movement	and	then	get	the	chosen	liquid	delivered	to	their	
mouths,	or	 they	may	 indicate	 their	choice	 through	 the	act	
of	reaching	for	one	of	the	stimuli	in	order	to	consume	it.

The	binary	stimulus-choice	paradigm	outlined	here	covers	
as	 special	 cases	 several	 tasks	 that	 have	 been	 used	 in	 the	
neuroscience	 and	 animal	 learning	 literatures.	 First	 are	 the	
type	 of	 simple	 binary	 choices	 described	 in	 figure	 74.�A	
(Kable	 &	 Glimcher,	 2007;	 Karjbich	 et	 al.,	 2008;	 Padoa-
Schioppa	 &	 Assad,	 2006,	 2008;	 Tom,	 Fox,	 Trepel,	 &		
Poldrack,	 2007;	 Wallis	 &	 Miller,	 2003).	 Second	 are		
the	 devaluation	 choice	 tasks	 described	 in	 figure	 74.�B		
(Izquierdo,	 Suda,	 &	 Murray,	 2004;	 Wellman,	 Gale,	 &	
Malkova,	 2005).	 The	 main	 differences	 from	 the	 previous		
set	of	 tasks	are	that	subjects	 indicate	their	choice	by	 lifting	
an	 object,	 instead	 of	 pressing	 a	 button	 or	 executing	 a		
saccade,	and	that	the	value	of	the	outcomes	is	manipulated	
by	 feeding	 the	 subject	 to	 satiation	 on	 some	 of	 the	 foods.	
Third	 are	 reward	 preference	 tasks	 (Izquierdo	 et	 al.).	 The		
key	 difference	 from	 the	 previous	 task	 is	 that	 subjects	 are	
exposed	to	the	actual	rewards,	instead	of	stimuli	associated	
with	 them,	 and	 they	 indicate	 their	 choice	 by	 reaching	 for	
the	 chosen	 outcome.	 Fourth	 are	 reversal	 learning	 tasks	
(Hampton,	 Bossaerts,	 &	 O’Doherty,	 2006).	 In	 a	 typical	
version	of	these	tasks	there	are	two	stimuli	and	one	potential	
outcome.	 In	 every	 trial	 the	 probability	 of	 obtaining	 the	
outcome	 is	 high	 for	 one	 of	 the	 stimuli	 and	 low	 for	 the		
other,	 and	 it	 evolves	 over	 time	 either	 through	 either	 an	
exogenously	specified	process	or	as	a	function	of	the	history	
of	choices.

It	is	important	to	emphasize	that,	as	general	as	it	is,	this	
behavioral	 paradigm	 does	 not	 cover	 many	 decision	 situa-
tions	that	have	also	been	used	in	the	literature	to	study	the	
goal-directed	 system.	 It	 rules	out	 the	case	of	multistimulus	
(nonbinary)	choice.	It	also	rules	out	a	popular	odor	discrimi-
nation	task	from	the	rat	 literature	(Schoenbaum,	Chiba,	&	
Gallagher,	 �998)	 in	 which	 rats	 decide	 whether	 or	 not	 to	
drink	a	liquid	from	a	single	location	based	on	the	odor	that	
they	 receive	 in	 an	 odor	 port	 (some	 odors	 predict	 rewards		
like	sugar,	others	punishers	like	quinine).	Note	that	instead	
of	a	choice	between	stimuli,	this	task	entails	choice	between	
motor	 plans	 with	 fixed	 state-dependent	 action-outcome		
relationships.	 More	 generally,	 the	 paradigm	 also	 rules	 out	
any	 tasks	 in	 which	 there	 is	 a	 constant	 mapping	 between	
actions	and	stimuli	or	outcomes	at	each	state	of	the	world.	
It	 also	 rules	 out	 instrumental	 paradigms	 in	 which	 animals	
engage	 in	 free	 rates	 of	 responding,	 even	 if	 they	 have	 a		
choice	 among	 multiple	 responses	 (Balleine	 &	 Dickinson,	
�998;	 Dayan	 &	 Balleine,	 2002).	 This	 last	 class	 of	 decision	
tasks	 is	 substantially	 more	 complicated	 as	 animals	 need		
to	 decide	 not	 only	 what	 to	 choose,	 but	 also	 about	 when		
to	 take	 action.	 In	 contrast,	 in	 the	 binary	 stimulus-choice	
paradigm	the	timing	of	decision	making	is	controlled	by	the	
experimenter.
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Multiple behavioral controllers: What is  
goal-directed choice?

As	 mentioned	 at	 the	 beginning	 of	 the	 chapter,	 a	 growing	
body	of	evidence	 suggests	 that	 the	brain	might	deploy	dif-
ferent	 behavioral	 controllers	 in	 parallel	 in	 many	 decision-
making	situations.	In	this	section	we	provide	a	brief	review	
of	 the	 computational	 differences	 between	 the	 three	 main	
systems	that	have	been	identified:	a	habitual,	a	goal-directed,	
and	 a	 Pavlovian	 system.	 For	 more	 detailed	 reviews	 see		
Balleine	 and	 colleagues	 (2008),	 Dayan	 (2008),	 and	 Rangel	
and	colleagues	(2008).

Goal-Directed	System	 The	defining	feature	of	the	goal-
directed	 system	 is	 that	 it	 makes	 choices	 over	 stimuli	 using	
model-based	computations	of	value.	These	are	carried	out	
in	 two	 steps.	First,	 a	 value	 is	 assigned	 to	 each	 stimulus	by	
identifying	 the	 distribution	 of	 outcomes	 associated	 with	 it	
and	computing	the	expected	values	of	those	outcomes	in	the	
current	state	of	the	world.	Second,	the	computed	values	are	
compared	in	order	to	select	one	of	the	stimuli.

Note	several	key	properties	of	this	system.	First,	its	goal	is	
to	make	choices	over	stimuli,	not	actions.	Second,	it	assigns	
value	to	stimuli	by	anticipating	the	outcomes	to	which	they	
might	 lead	 and	 then	 computing	 their	 expected	 reward.	
Third,	this	computation	is	based	on	stimulus-outcome	asso-
ciations	 and	 beliefs	 about	 the	 reward	 that	 those	 outcomes	
are	 likely	 to	 generate	 in	 the	 current	 state	 of	 the	 world.	 It	
follows	 that	 the	 computation	 is	 model	 based	 (sometimes	
called	 forward	 looking)	 and	 is	 not	 based	 on	 the	 historical	
level	of	payoff	generated	by	 the	different	 stimuli.	This	 last	
property	 gives	 enormous	 flexibility	 to	 the	 system,	 since	 it	
allows	it	to	rapidly	update	the	value	that	it	assigns	to	stimuli	
based	on	either	a	change	on	the	stimulus-outcome	associa-
tions	or	a	change	in	the	state	of	the	world	that	affects	their	
expected	value.	Fourth,	 this	flexibility	comes	at	 the	cost	of	
computational	 complexity.	 The	 brain	 needs	 to	 store	 or	
compute	stimulus-outcome	associations	and	state-dependent	
value	functions,	and	then	needs	to	carry	out	expected	value	
computations	online.

Habitual	System	 The	defining	feature	of	the	habit	system	
is	that	it	makes	choices	over	actions	based	on	the	historical	
level	of	rewards	that	they	have	generated.	This	is	also	done	
in	two	steps.	First,	a	value	for	each	of	the	available	actions	
is	retrieved	from	memory.	Second,	the	retrieved	values	are	
compared	in	order	to	select	one	of	the	stimuli.

Note	several	key	properties	of	this	system.	First,	choice	is	
made	over	actions,	not	over	stimuli.	Second,	the	values	used	
to	make	choices	are	retrieved	from	memory,	not	computed	
online.	 Third,	 the	 values	 assigned	 to	 actions	 depend	 on		
the	 level	 of	 rewards	 that	 they	 have	 generated	 in	 the	 past.	

Multiple	studies	have	shown	that	relatively	simple	reinforce-
ment	 learning	 algorithms	 approximate	 well	 the	 process		
of	 value	 learning	 for	 this	 system	 (Montague,	 Dayan,	 &	
Sejnowski,	�996;	Niv	&	Montague,	2008;	Schultz,	Dayan,	
&	Montague,	�997;	Sutton	&	Barto,	�998).	Fourth,	the	fact	
that	 the	 learning	 can	 be	 state	 sensitive	 leads	 to	 the	 use	 of	
state-dependent	action	values	by	the	habit	system.	Fifth,	the	
computations	 made	 by	 the	 habitual	 system	 at	 the	 time	 of	
choice	 are	 simpler	 than	 those	 of	 the	 goal-directed	 system,	
since	values	are	retrieved	from	memory	instead	of	computed	
online.	Sixth,	this	computational	simplicity	comes	at	the	cost	
of	some	behavioral	flexibility.	Although	with	enough	experi-
ence	the	habitual	system	is	able	 to	make	optimal	decisions	
in	environments	that	are	sufficiently	stable,	it	cannot	do	so	
when	the	action-outcome	contingencies	are	rapidly	chang-
ing	(as,	for	example,	in	the	simple	experiment	described	in	
figure	74.�A).

Pavlovian	System	 In	contrast	to	the	previous	two	systems,	
which	are	able	to	assign	values	to	any	stimulus	or	action,	the	
Pavlovian	 system	 assigns	 values	 to	 a	 small	 set	 of	 actions		
that	 are	 evolutionarily	 appropriate	 responses	 to	 particular	
environmental	stimuli.	Typical	examples	include	preparatory	
behaviors	(such	as	approaching	cues	that	predict	the	delivery	
of	food)	and	consummatory	responses	to	a	reward	(such	as	
pecking	at	a	food	magazine).

Although	 many	 Pavlovian	 behaviors	 are	 “hardwired”	
responses	 to	 specific	 predetermined	 stimuli,	 with	 sufficient	
experience	animals	can	also	learn	to	deploy	them	in	response	
to	 other	 stimuli.	 For	 example,	 rats	 and	 pigeons	 learn	 to	
approach	 lights	 that	 predict	 the	 delivery	 of	 food.	 At	 first	
glance,	 Pavlovian	 behaviors	 look	 like	 automatic,	 stimulus-
triggered	 responses,	 and	 not	 like	 instances	 of	 value-based	
choice	 processes.	 However,	 since	 Pavlovian	 responses	 can	
be	 interrupted,	 they	must	be	assigned	something	akin	 to	a	
“value”	so	that	they	can	compete	with	the	actions	that	are	
favored	by	the	other	valuation	systems.

The	 computational	 and	 neurobiological	 basis	 of	 the		
Pavlovian	 system	 is	 much	 less	 well	 understood	 than	 that		
of	 the	 habitual	 and	 the	 goal-directed	 systems.	 For	 recent	
reviews	 see	 Dayan	 and	 Seymour	 (2008)	 and	 Rangel	 and	
colleagues	 (2008).	 This	 lack	 of	 understanding	 is	 due,	 in		
part,	 to	 the	 fact	 that	 there	 might	 be	 multiple	 Pavlovian		
controllers,	some	responsible	for	triggering	outcome-specific	
responses	 (e.g.,	 pecking	 at	 food	 or	 licking	 at	 water)	 and	
others	 responsible	 for	 triggering	 more	 general	 valence-
dependent	 responses	 (e.g.,	 approaching	 positive	 outcomes	
and	withdrawing	from	negative	ones).	Nevertheless,	since	a	
wide	 range	 of	 human	 behaviors	 with	 important	 economic	
consequences	might	be	controlled	by	the	Pavlovian	system	
(from	 overeating	 to	 the	 harvesting	 of	 immediate	 smaller	
rewards	at	the	expense	of	larger	delayed	rewards),	a	detailed	
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understanding	of	this	system	is	an	important	open	question	
for	neuroeconomics.

Coexisting	and	Competing	Valuation	Systems	 All	these	
behavioral	controllers	can	potentially	be	active	at	the	same	
time	 even	 in	 the	 case	 of	 simple	 binary	 stimulus	 choice.	
Consider,	for	example,	the	experiment	in	figure	74.�B.	Since	
some	 of	 the	 stimuli	 covering	 the	 food	 rewards	 have	 been	
associated	 with	 appetitive	 outcomes,	 they	 might	 trigger	
Pavlovian	approach	responses	that	could	influence	which	of	
the	 two	 objects	 the	 monkey	 lifts	 first.	 Similarly,	 since	 the	
execution	of	 the	choice	entails	 two	constant	motor	actions	
(reach	 for	 the	 left	object	or	reach	 for	 the	right	object)	and	
the	 monkeys	 receive	 extensive	 experience	 in	 the	 task,	 the	
habitual	system	might	use	historical	action	values	to	influence	
the	 choice	 that	 is	 made.	 Finally,	 the	 goal-directed	 system	
could	also	bias	 the	monkey’s	actions	by	assigning	a	higher	
value	to	the	actions	associated	with	the	higher-value	stimulus.	
This	possibility	 leads	to	a	very	 important	open	question	 in	
neuroeconomics	 about	 which	 next	 to	 nothing	 is	 known:	
How	 does	 the	 brain	 assign	 control	 to	 the	 three	 different	
systems?	Although	some	simple	computational	models	have	
been	proposed	(Daw	et	al.,	2005;	Dayan,	Niv,	Seymour,	&	
Daw,	2006),	 to	date	no	experiments	have	been	performed	
to	study	how	the	systems	interact	and	compete	at	the	neural	
level	in	simple	binary	stimulus	choice.

In	this	review	we	focus	on	the	computations	of	the	goal-
directed	 system	 during	 the	 simple	 binary	 stimulus-choice	
task.	We	do	so	not	because	the	effects	of	the	other	systems	
in	this	type	of	situations	are	unimportant,	but	because	much	
more	 is	 known	about	 the	 role	of	 the	goal-directed	 system.	
We	emphasize,	however,	that	a	full	understanding	of	simple	
stimulus	choice	will	require	the	study	of	how	the	other	two	
systems	 are	 deployed	 in	 this	 type	 of	 task	 and	 of	 how	 the	
allocation	of	control	is	resolved.

Computational basis of goal-directed choice in the  
simple binary stimulus-choice paradigm

In	this	section	we	provide	a	mathematical	description	of	the	
computations	 that	 the	goal-directed	 system	needs	 to	make	
in	simple	binary	stimulus-choice	situations.

Representation	 of	 the	 Choice	 Problem	 The	 first	
problem	 that	 the	 system	 needs	 to	 solve	 is	 to	 identify		
the	parameters	of	 the	decision-making	problem:	What	are	
the	 potential	 stimuli	 that	 could	 be	 chosen?	 What	 are	 the	
actions	 required	 to	 obtain	 each	 stimulus?	 What	 external		
and	 internal	 state	 variables	 might	 affect	 the	 desirability	 of	
the	 different	 stimuli	 and	 actions?	 Let	 e	 be	 a	 summary	 of		
the	internal	and	external	variables	determining	the	state	of	
the	world.

This	part	of	the	choice	process	is	often	ignored	in	decision-
making	models	by	implicitly	assuming	that	the	brain	always	
computes	these	variables	correctly.	But	given	the	complexity	
of	the	world,	it	is	likely	that	the	brain	relies	on	computational	
shortcuts.	Consider,	for	example,	the	problem	of	a	shopper	
in	 a	 modern	 supermarket	 aisle	 that	 contains	 thousands	 of	
different	products.	When	confronted	with	such	complexity,	
the	brain	only	evaluates	and	compares	a	small	subset	of	the	
possible	items.	Since	an	item	is	chosen	only	if	it	is	considered,	
the	representation	step	has	a	large	impact	on	the	choice	that	
is	eventually	made.	Given	the	large	number	of	external	and	
internal	variables	that	can	impact	the	choice	situation,	similar	
issues	are	likely	to	arise	in	the	identification	of	the	relevant	
states	 of	 the	 world.	 The	 algorithms	 and	 neural	 processes		
at	 work,	 as	 well	 as	 the	 limitations	 on	 choice	 performance		
to	 which	 they	 lead,	 are	 just	 beginning	 to	 be	 understood	
(Reutskaja,	Pulst-Korenhberg,	Nagel,	Camerer,	&	Rangel,	
under	 review).	Basic	open	questions	 include	 the	 following:	
How	does	the	brain	determine	which	actions	to	assign	values	
to	and	which	actions	to	ignore?	Is	there	a	limit	to	the	number	
of	 options	 that	 animals	 can	 consider	 at	 a	 time?	 How	 are	
internal	and	external	states	computed?

Stimulus	Valuation	 As	we	saw	before,	the	goal-directed	
system	 makes	 choices	 by	 assigning	 values	 to	 the	 different	
stimuli	 based	 on	 the	 expected	 value	 of	 the	 outcomes	
associated	with	them.	Let	V(se)	denote	the	value	of	stimulus	
s	 given	 the	 state	 of	 the	 world	 e.	 In	 order	 to	 compute	 this	
value,	 the	 system	 needs	 two	 pieces	 of	 information:	 (�)	 the	
stimulus-outcome	 associations,	 which	 are	 summarized	 by	
the	 function	 q(os)	 specifying	 the	 probability	 that	 every	
potential	outcome	o	occurs	as	a	 function	of	 the	 stimulus	 s,	
and	(2)	the	value	function	v(oe)	specifying	the	value	of	each	
outcome	given	the	state	of	the	world.

Note	 several	 things	 about	 this	 notation.	 First,	 there	 is	 a	
difference	 between	 the	 p(os) function	 that	 describes	 the	
objective	mapping	between	stimulus	and	outcomes	and	the	
q(os)	function	that	describes	the	beliefs	of	the	subject	about	
that	 relationship.	 Second,	 by	 assumption,	 the	 stimulus-
outcome	 associations	 do	 not	 depend	 on	 the	 state	 of	 the	
world,	and,	for	simplicity,	we	assume	that	the	subjects	always	
know	 this	 fact.	Third,	 the	value	 function	v(oe)	 is	 the	goal-
directed	system’s	belief	about	the	reward	that	it	will	experi-
ence	if	the	outcome	occurs,	which	is	a	different	signal	than	
the	level	of	reward	that	actually	occurs	at	the	time	of	con-
sumption.	Fourth,	the	value	function	v(oe)	does	not	depend	
on	 the	 stimulus.	 The	 reason	 is	 that	 there	 is	 a	 conceptual	
distinction	 between	 the	 (positive	 or	 negative)	 outcomes		
generated	by	an	stimulus	and	the	costs	of	taking	the	action	
necessary	to	get	that	stimulus.

The	value	assigned	 to	a	 stimulus	 is	 simply	 the	 expected	
value	of	the	outcomes	to	which	it	might	lead.	This	is	given	by
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Stimulus	Choice	 The	brain	uses	the	net-value	information	
to	make	a	choice	between	the	stimuli.	A	sizable	amount	of	
behavioral	evidence	suggests	that	the	maximization	process	
is	stochastic	and	well	approximated	by	a	soft-max	process	in	
which	the	probability	of	choosing	stimulus	s	is	given	by
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where	 t	 is	 a	 coefficient	 measuring	 the	 sensitivity	 of	 the	
choices	to	the	stimulus	values	(when	t	=	0	each	alternative	
is	chosen	with	equal	probability	regardless	of	the	values,	and	
for	 sufficiently	 large	t	 almost	all	of	 the	probability	 falls	on	
the	item	with	the	highest	value).

The	soft-max	model	 is	a	reduced-form	model	of	 limited	
use	for	neuroeconomics,	since	it	describes	how	the	probabil-
ity	of	making	a	choice	changes	with	the	net	values,	but	not	
how	 the	 choice	 is	 actually	 made.	 A	 large	 research	 effort		
is	 devoted	 to	 this	 problem	 (for	 recent	 reviews	 see	 Bogacz,	

2007;	Busemeyer	&	Johnson,	2004;	Ditterich,	2006;	Gold	&	
Shadlen,	2007;	Rangel,	2008).	Most	of	the	models	that	have	
been	 proposed	 are	 versions	 of	 a	 race-to-barrier	 diffusion	
process.	A	simple	version	of	 the	model	 for	 the	case	of	 two	
alternatives	 is	 depicted	 in	 figure	 74.2A.	 The	 model	 has	
several	 components.	 First,	 there	 are	 circuits	 that	 compute	
the	 value	 of	 each	 of	 the	 items.	 The	 value	 assigned	 to	 the	
items	 is	 assumed	 to	fluctuate	 stochastically	 from	 instant	 to	
instant.	Every	 instant,	 the	 two	value	 signals	are	 subtracted	
to	produce	a	relative-value	signal	that	is	then	fed	to	an	inte-
grator	circuit	 that	computes	 the	value	of	 item	�	minus	 the	
value	of	item	2,	thus	keeping	track	of	the	accumulated	rela-
tive	signal.	A	decision	is	made	when	this	relative-value	signal	
becomes	 sufficiently	 large	 (“choose	 item	 �”)	 or	 sufficiently	
negative	(“choose	item	2”).

This	class	of	models	has	several	attractive	features.	First,	
they	 predict	 a	 logistic	 choice	 function	 similar	 to	 the	 one	
generated	by	the	soft-max	model.	Second,	they	predict	that	
the	time	required	to	make	a	choice	should	be	 larger	when	
items	have	similar	values	than	when	the	values	are	far	apart.	

Figure	74.2	 Models	of	the	value	comparison	process.	(A)	Illustra-
tion	of	the	main	components	of	the	race-to-barrier	models.	(Adapted	
with	 permission	 from	 Bogacz,	 2007.)	 (B)	 A	 typical	 run	 of	 the	
random	walk	model.	The	step	function	represents	the	accumulated	
relative	value	of	the	“right”	target.	The	process	starts	at	a	middle	
point	and	stops	the	first	time	this	variable	crosses	one	of	the	thresh-

olds	(depicted	by	the	bracketed	horizontal	lines).	“Right”	is	chosen	
when	it	crosses	the	upper	threshold;	“left”	is	chosen	when	it	crosses	
the	lower	one.	Time	advances	in	discrete	steps.	The	size	of	every	
step	 is	given	by	a	Gaussian	distribution	with	a	mean	 that	 is	pro-
portional	 to	 the	 true	direction	of	motion.	This	noise	 is	meant	 to	
capture	the	variability	in	the	valuation	processes.
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Both	predictions	are	consistent	with	a	large	body	of	behav-
ioral	data.	Finally,	the	model	makes	useful	predictions	about	
which	kind	of	computations	should	be	implemented	by	the	
brain:	there	should	be	circuits	computing	the	value	of	each	
stimulus,	 circuits	 computing	 relative	 values,	 an	 integrator	
circuit,	and	a	circuit	that	triggers	a	choice	when	a	barrier	is	
crossed.

These	 models	 assume	 that	 a	 choice	 is	 first	 made	 over	
stimuli	and	that	the	choice	is	then	implemented	by	deploying	
the	action	that	leads	to	that	stimulus.	We	refer	to	these	types	
of	 models	 as	 stimulus-based choice.	 Another	 a	 priori	 equally	
plausible	theory	(Glimcher,	Dorris,	&	Bayer,	2005)	specifies	
that	 the	brain	uses	 the	stimulus	values	 to	assign	a	value	 to	
every	 feasible	 action,	 and	 that	 it	 then	 makes	 the	 choice	
through	a	process	of	competition	over	action	plans.	We	refer	
to	this	possibility	as	action-based choice.	It	is	difficult	to	compare	
these	 two	 views	 on	 theoretical	 grounds,	 since	 the	 race-	
to-barrier	models	apply	well	 to	both	 types	of	choice.	Thus	
novel	 experiments	 are	 needed	 to	 address	 this	 issue.	 The	
question	is	important	because	the	neural	systems	involved	in	
making	 the	 choice	 are	 likely	 to	 be	 different	 in	 the	 case	 of	
stimulus-	and	action-based	choice.

Learning	 In	some	versions	of	the	simple	binary	stimulus-
choice	 paradigm,	 subjects	 receive	 an	 outcome	 after	 every	
choice.	This	provides	them	with	feedback	that	can	be	used	
to	update	their	estimate	of	the	stimulus-outcome	associations.	
Here	we	propose	a	simple	algorithm	that	subjects	can	use	to	
carry	out	this	type	of	learning.

We	 assume	 that	 the	 experimental	 task	 is	 structured	 as	
follows.	Every	experimental	trial	t	begins	with	the	revelation	
of	 the	 current	 state	 of	 the	 world	 (et). A	 stimulus	 st	 is	 then	
chosen	 that	 leads	 to	 the	 set	 of	 outcomes	 Ot	 and	 a	 level	 of	
reward	rt.

We	assume	that	learning	takes	place	in	two	stages.	In	the	
first	stage	a	prediction	error	is	computed	for	every	possible	
outcome	in	the	set	O. These	prediction	errors	are	given	by

δ t
O

t to I q o s( ) = − ( )
where	 I0	 is	an	 indicator	 function	 taking	a	value	of	�	 if	 the	
outcome	in	question	occurs	and	a	value	of	zero	otherwise.	
Note	 that	positive	prediction	errors	measure	 the	degree	 to	
which	 the	 occurrence	 of	 an	 outcome	 was	 surprising,	 and	
negative	prediction	errors	measure	the	extent	to	which	the	
nonoccurrence	 of	 the	 other	 outcomes	 was	 surprising.	 In		
the	second	stage	the	prediction	errors	are	used	to	update	the	
state-outcome	probability	function	for	that	stimulus	by

q o s q o s ot t t t t+ ( ) = ( ) + ( )� λδ
where	l	is	a	learning	rate	between	0	and	�	that	affects	the	
speed	of	learing.

Note	 that	 this	 formulation	assumes	 that	 only	 the	beliefs	
for	the	stimulus	that	was	chosen	are	updated.	This	approach	
assumes	a	very	strong	form	of	discrete	learning,	an	assump-

tion	 which	 is	 plausible	 in	 environments	 where	 there	 are	 a	
small	number	of	highly	dissimilar	stimuli	but	not	in	domains	
in	which	“similar”	stimuli	have	“similar”	stimulus-outcome	
associations.	In	the	later	case,	the	outcome	in	one	state	can	
provide	 information	 about	 the	 stimulus-outcome	 associa-
tions	for	other	states.	The	extent	to	which	the	goal-directed	
system	 engages	 in	 this	 type	 of	 generalization	 is	 largely	
unknown.

Neurobiological basis of goal-directed choice in the simple 
binary stimulus-choice paradigm

In	this	section	we	review	some	of	what	is	known	about	how	
the	 brain	 implements	 the	 computations	 described	 in	 the	
previous	 section	and	highlight	 some	 important	open	ques-
tions.	 For	 alternative	 recent	 reviews	 see	 Balleine	 and	 col-
leagues	(2008),	Rangel	(2008),	Rangel	and	colleagues	(2008),	
and	Wallis	(2007).

Representation	 Unfortunately,	next	to	nothing	is	known	
about	 this	 important	 step	 in	 the	 decision-making	 process.	
Open	questions	of	particular	interest	include	the	following.	
How	does	the	brain	know	when	to	activate	the	goal-directed	
evaluation	 and	 comparison	 circuitry?	 How	 does	 the	 brain	
decide	 which	 stimuli	 to	 evaluate	 at	 any	 given	 moment?	
Which	aspects	of	 the	state	of	the	world	are	measured,	and	
how	 are	 they	 encoded	 by	 the	 goal-directed	 evaluation	
circuitry?	The	first	question	is	important	because	organisms	
are	exposed	to	potential	choice	stimuli	continuously,	but	the	
goal-directed	 choice	 might	 only	 engage	 in	 the	 process	 of	
choice	 sporadically.	 The	 second	 question	 is	 important	
because	 often	 there	 are	 many	 potential	 stimuli	 and	 the	
system	might	not	have	the	capacity	to	evaluate	all	of	them	
fully.	 Think,	 for	 example,	 of	 a	 consumer	 in	 a	 modern	
supermarket	aisle.

Stimulus	 Valuation	 Several	 papers	 have	 found	 neural	
correlates	 of	 the	 stimulus-value	 signal	 (V(se)).	 Plassmann,	
O’Doherty,	 and	 Rangel	 (2007)	 investigated	 the	 neural	
correlates	of	stimulus	valuation	by	the	goal-directed	system	
in	humans	using	 fMRI.	They	showed	pictures	of	desirable	
snacks	to	hungry	subjects	who	had	to	place	bids	for	the	right	
to	 eat	 them	at	 the	 end	of	 the	 experiment.	The	 size	of	 the	
bids	was	a	measure	of	the	value	assigned	by	the	brain	to	each	
stimulus	at	the	time	of	choice	and	positively	correlated	with	
BOLD	activity	in	the	mOFC	and	the	dorsolateral	prefrontal	
cortex	(DLPFC).	(For	related	fMRI	findings	see	Arana	et	al.,	
2003;	 Erk,	 Spitzer,	 Wunderlich,	 Galley,	 &	 Walter,	 2002;	
Hare,	O’Doherty,	Camerer,	Schultz,	&	Rangel,	2008;	Paulus	
&	 Frank,	 2003;	 Tom	 et	 al.,	 2007;	 Valentin,	 Dickinson,	 &	
O’Doherty,	2007).

A	related	study	used	single-unit	electrophysiology	in	non-
human	 primates	 to	 look	 for	 activity	 in	 the	 orbitofrontal	
cortex	that	correlates	with	stimulus	values	(Padoa-Schioppa	
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&	Assad,	2006,	2008).	Every	trial,	thirsty	animals	were	given	
a	choice	between	two	stimuli	associated	with	small	magni-
tudes	of	two	different	juices.	After	a	period	of	deliberation,	
the	 animals	 indicated	 their	 choice	 with	 a	 left-or-right	 eye	
movement.	The	action	associated	with	each	stimulus	varied	
from	 trial	 to	 trial.	 The	 authors	 estimated	 a	 logistic-choice	
model	to	compute	a	measure	of	value	for	each	juice-amount	
combination	that	was	then	correlated	with	the	neural	signals.	
They	 found	 a	 large	 population	 of	 neurons	 encoding	 the	
value	 of	 the	 stimulus	 associated	 with	 each	 juice	 indepen-
dently	of	the	action	that	it	took	to	get	it.	They	did	not	find	
an	equivalent	population	encoding	the	value	of	the	actions.	
A	closely	related	study	recorded	simultaneously	from	monkey	
OFC	and	DLPFC	and	found	neurons	encoding	for	the	value	
of	 stimuli	 in	both	areas,	although	the	value	signal	arose	 in	
DLPFC	 with	 a	 delay	 of	 approximately	 �00	ms	 (Wallis	 &	
Miller,	2003).

The	previous	studies	 looked	for	stimulus-value	signals	 in	
the	case	in	which	animals	made	choices	between	appetitive	
items.	An	important	question	is	whether	the	brain	uses	the	
same	networks	 to	 evaluate	 stimuli	 associated	with	aversive	
items	(e.g.,	choosing	which	of	two	undesirable	risks	to	take).	
Plassmann,	O’Doherty,	and	Rangel	(2008)	used	an	experi-
mental	design	similar	to	the	one	we	have	described	to	study	
this	question.	Subjects	were	 shown	pictures	of	undesirable	
food	items	(e.g.,	canned	vegetables)	and	had	to	bid	to	avoid	
having	to	eat	them.	The	bids	were	a	measure	of	the	extent	
to	 which	 they	 disliked	 the	 foods.	 Interestingly,	 no	 areas	
exhibited	 a	 positive	 and	 significant	 correlation	 with	 this	
measure	 of	 stimulus	 value.	 Instead,	 the	 study	 found	 that	
activity	 in	 the	 mOFC	 and	 the	 DLPFC	 were	 negatively		
correlated	 with	 the	 bids.	 This	 finding	 suggests	 that	 these		
two	structures	play	a	role	in	the	valuation	of	both	appetitive	
and	aversive	items,	in	the	appetitive	case	through	increased	
activity	 and	 in	 the	 aversive	 case	 through	 decreased	
activity.

Interestingly,	given	that	the	V(se)	function	is	a	forecast	of	
the	actual	value	of	consuming	the	objects	associated	with	the	
stimuli,	activity	in	the	OFC	has	also	been	shown	to	be	cor-
related	with	the	value	of	expected	outcomes	in	the	absence	
of	 choice.	 For	 example,	 Gottfried,	 O’Doherty,	 and	 Dolan	
(2003)	presented	subjects	with	visual	stimuli	that	were	paired	
with	 different	 odors	 and	 used	 a	 devaluation	 procedure	 to	
manipulate	 the	 value	 of	 some	 of	 the	 odors.	 Using	 human	
fMRI,	 they	 found	that	activity	 in	amygdala	and	OFC	was	
consistent	 with	 the	 encoding	 of	 the	 expected	 odor	 value		
at	 the	 time	 of	 cue	 presentation	 (prior	 to	 the	 actual	 odor	
delivery).	 (For	 related	 human	 fMRI	 studies	 see	 Gottfried,	
O’Doherty,	&	Dolan,	2002;	Nobre,	Coull,	Frith,	&	Mesulam,	
�999;	O’Doherty,	Deichmann,	Critchley,	&	Dolan,	2002).	
These	 findings,	 together	 with	 the	 ones	 for	 goal-directed	
choice	described	previously,	suggest	that	the	OFC	might	be	
involved	in	the	computation	of	different	types	of	value	signals	

at	different	stages	of	the	choice	process	and	in	different	types	
of	tasks.

In	all	the	previous	experiments,	there	were	no	costs	associ-
ated	 with	 choosing	 an	 item.	 Hare	 and	 colleagues	 (2008)	
studied	a	simple	choice	paradigm	in	which	subjects	had	to	
make	a	decision	about	whether	or	not	to	buy	a	food	snack	
at	a	given	price.	In	this	case,	acquiring	the	stimulus	entailed	
a	cost	equal	to	a	loss	of	money	given	by	the	price.	Consistent	
with	the	studies	described	before,	they	found	that	the	value	
of	 the	 foods	 correlated	 with	 activity	 in	 the	 medial	 OFC,		
but	 that	 the	price	was	not	encoded	 in	 this	area.	Instead,	a	
“consumer	 surplus”	 signal,	 equal	 to	 the	 value	 of	 the	 item	
minus	its	price,	was	found	in	the	central	OFC.	These	results	
suggest	that	the	medial	OFC	might	be	involved	in	the	encod-
ing	 of	 stimulus	 value	 but	 is	 not	 responsive	 to	 the	 costs	 of	
acquiring	the	item.

A	 difficulty	 in	 identifying	 areas	 where	 stimulus	 values	
might	be	encoded	is	that	these	signals	are	most	likely	posi-
tively	correlated	with	other	signals	 that	are	not	part	of	 the	
goal-directed-system	 valuation	 process.	 Consider	 several	
examples	that	have	caused	some	confusion	in	the	literature.	
First,	exposure	to	stimuli	with	very	positive	or	very	negative	
stimulus	 values	 might	 induce	 an	 increase	 in	 arousal	 in	
systems	 associated	 with	 motor	 preparation.	 If	 the	 experi-
mental	condition	only	includes	appetitive	items,	the	arousal	
and	stimulus-value	 signals	will	be	perfectly	correlated,	and	
thus	one	might	misattribute	one	type	of	signal	for	the	other.	
As	proposed	by	Roesch	and	Olson	 (2004),	one	way	of	dis-
sociating	 the	 two	 signals	 is	 to	 include	 both	 appetitive	 and	
aversive	items	in	the	experiment:	neural	value	signals	increase	
linearly	with	stimulus	value,	whereas	arousal	signals	are	cor-
related	with	the	absolute	value	of	the	stimulus	value.	Using	
this	logic	in	a	monkey	electrophysiology	experiment,	Roesch	
and	Olson	found	that	activity	in	OFC	reflected	the	stimulus	
value,	 whereas	 activity	 in	 premotor	 cortex	 reflected	 an	
arousal-type	variable.	Second,	similar	to	the	case	of	arousal,	
exposure	to	stimuli	with	very	positive	or	very	negative	stimu-
lus	 values	 might	 induce	 an	 overall	 increase	 in	 attention.	
Third,	 in	many	choice	paradigms,	goal	values	and	reward	
prediction	errors	are	positively	correlated	(even	if	the	design	
includes	both	appetitive	and	aversive	items).	Hare	and	col-
leagues	 (2008)	 show	 that	 prediction	 errors	 and	 stimulus	
values	can	be	dissociated	by	introducing	a	random	monetary	
prize	in	every	trial	that	is	independent	of	the	choices	made	
by	 the	 subjects.	 Using	 this	 experimental	 trick,	 they	 found	
that	 BOLD	 activity	 in	 the	 medial	 OFC,	 but	 not	 ventral	
striatum,	 was	 correlated	 with	 the	 stimulus	 values,	 whereas	
activity	in	the	ventral	striatum	was	most	consistent	with	the	
prediction	error	signal.

Why	is	medial	OFC	involved	in	the	computation	of	stimu-
lus	values?	Some	authors	have	argued	that	this	area	of	the	
prefrontal	cortex	might	be	in	a	unique	position	to	integrate	
information	about	stimuli	and	states	of	the	word	into	a	value	
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(Schoenbaum,	 Roesch,	 &	 Stalnaker,	 2006;	 Wallis,	 2007).	
This	 favorable	 position	 is	 due	 to	 its	 multiple	 connections	
with	limbic	areas	such	as	the	thalamus,	amygdala,	and	stria-
tum	(Carmichael	&	Price,	�996;	Ongur	&	Price,	2000).

So	far	we	have	focused	on	the	neural	basis	of	the	stimulus-
value	 signal.	 This	 signal	 represents	 only	 the	 output	 of	 the	
valuation	process.	As	described	in	the	previous	section,	these	
values	 are	 constructed	 by	 either	 retrieving	 or	 computing	
stimulus-outcome	 associations	 [the	 p(os)	 functions],	 by	
retrieving	 or	 computing	 the	 value	 associated	 with	 each	 of	
those	outcomes	in	the	current	state	of	the	world	[the	v(oe)	
function],	 and	by	 integrating	 them	 into	an	expected	value	
signal	[the	V(se) stimulus	value].	This	analysis	gives	rise	to	
the	following	important	questions:	How	and	where	are	the	
stimulus-outcome	associations	represented?	How	and	where	
is	 the	 v(oe)	 valuation	 function	 represented,	 and	 how	 does	
the	state	of	 the	world	modulate	 its	value?	How	and	where	
are	the	two	of	them	integrated	into	the	stimulus	value	signal?	
The	 answers	 to	 these	 questions	 are	 largely	 unknown	 and	
constitute	 one	 of	 the	 most	 important	 open	 problems	 in	
neuroeconomics.

Stimulus	 Choice	 Although	 several	 proposals	 have	 been	
made	 about	 how	 the	 brain	 compares	 options	 in	 simple	
stimulus-choice	 situations	 (Glimcher	 et	 al.,	 2005;	 Wallis,	
2007),	next	to	nothing	is	known	about	this	is	actually	done.	
Understanding	how	the	goal-directed	systems	compare	the	
stimulus	values	to	make	a	choice	is	another	important	open	
problem	in	neuroeconomics.	Other	open	questions	include	
the	following:	Does	the	brain	make	choices	by	implementing	
a	 race-to-barrier	 model?	 If	 so,	 is	 the	 choice	 made	 over	
actions	or	stimuli?	How	are	the	barriers	chosen	and	imple-
mented?	How	does	the	slope	of	the	integrators	relate	to	the	
strength	 of	 the	 stimulus-value	 signal	 encoded	 in	 medial	
OFC?	 Are	 there	 other	 inputs	 to	 the	 comparison	 process	
besides	 the	 medial	 OFC	 signal?	 How	 and	 where	 does	 the	
brain	 incorporate	 information	 about	 the	 cost	 of	 acquiring	
the	different	stimuli?	How	does	the	system	go	from	stimulus	
choices	to	motor	responses?

Learning	 There	 is	 a	 large	 literature	 in	 neuroeconomics	
showing	 that	 reward	 prediction	 errors	 are	 encoded	 in	 the	
ventral	striatum	in	the	context	of	Pavlovian	(nonchoice)	and	
habitual	choice	paradigms	(for	a	comprehensive	review	see	
Niv	&	Montague,	2008).	Unfortunately,	this	literature	is	not	
very	 informative	about	 the	 learning	that	 takes	place	 in	the	
goal-directed	system	during	the	simple	stimulus-choice	task.	
The	 reason	 is	 that	 the	 prediction	 errors	 required	 here	
measure	 how	 surprising	 the	 occurrence	 of	 individual	
outcomes	is,	as	opposed	to	prediction	errors	of	reward	that	
measure	the	amount	of	unexpected	reward	received	at	the	
time	 of	 consumption.	 These	 are	 two	 very	 different	 types		
of	 learning	 and	 are	 likely	 to	 be	 implemented	 by	 different	

networks.	 Understanding	 the	 computational	 and	 neuro-
biological	 basis	 of	 how	 the	 goal-directed	 system	 learns	
stimulus-outcome	 associations	 is	 another	 important	 open	
question	for	neuroeconomics.

Conclusions

The	goal-directed	system	provides	organisms	with	a	flexible	
and	 adaptive	 tool	 to	 make	 decisions.	 This	 is	 based	 on	 its	
ability	to	assign	values	to	stimuli	based	on	beliefs	about	the	
outcomes	 that	 they	are	 likely	 to	generate	and	 the	value	of	
those	outcomes	in	the	current	state	of	the	world.	The	system	
might	be	particularly	powerful	through	its	interactions	with	
other	higher	 cognitive	processes	 that	might	allow	 it	 to	use	
analytical	and	memory	processes	 to	 improve	 its	character-
ization	of	the	stimulus-outcome	associations.	Given	that	the	
system	 is	 thought	 to	 play	 a	 large	 role	 in	 human	 decision	
making,	understanding	its	computational	and	neurobiologi-
cal	basis	 is	 central	 to	understanding	 the	essence	of	human	
nature.

This	review	has	emphasized	the	use	of	simple	mathemati-
cal	 models	 to	 describe	 the	 computations	 that	 the	 goal-
directed	system	needs	to	carry	out	in	order	to	make	a	choice.	
These	 models	 are	 useful	 because	 they	 lay	 down	 precise	
descriptions	 of	 the	 computational	 nature	 of	 the	 problem	
(“what	needs	to	be	encoded”)	and	guide	the	search	for	the	
neural	instantiation	of	the	process	at	work.	We	believe	that	
the	 use	 of	 these	 types	 of	 models	 is	 critical	 to	 the	 rapid	
advancement	of	the	field.
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