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Neural computations associated with goal-directed choice
Antonio Rangel and Todd Hare
In goal-directed decision-making, animals choose between

actions that are associated with different reward outcomes

(e.g., foods) and with different costs (e.g., effort). Rapid

advances have been made over the past few years in our

understanding of the computations associated with goal-

directed choices, and of how those computations are

implemented in the brain. We review some important findings,

with an emphasis on computational models, human fMRI, and

monkey neurophysiology studies.
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Introduction
Consider a canonical decision-making problem. Every

day a hungry animal is placed at the bottom of a Y-maze

and is allowed to run towards the upper left or right to

collect a reward. The left arm leads to a highly liked food,

but is also associated with a high cost since the animal is

required to swim to reach it. The right end leads to a less

desirable outcome, but does not require swimming. The

foods randomly change each day. How does the animal

decide which course to take?

A growing body of work has shown that this problem can

be solved using two very different approaches [1–4]. In

one approach animals learn the value of each action

through trial-and-error using reinforcement learning,

and then take the action with the highest learned value

[2,4–9]. This strategy requires little knowledge on the

part of the subject and can account for multiple aspects of

behavior in many domains, but is only able to pick the

optimal action on average. In another approach, animals

estimate the value associated with each action in every

trial using knowledge about their costs and benefits. With

sufficient knowledge this approach, often called ‘goal-

directed’ or ‘model-based’ decision-making [7,8,10], can
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do much better since it is able to pick the optimal action

in every trial [10].

Over the past decade significant advances have been

made in understanding how the brain makes goal-

directed choices. We review important findings from

the past few years, as well as some of the most pressing

open questions. Owing to space limitations we do not

attempt to be comprehensive.

Computational framework
Models from psychology and economics suggest that goal-

directed choice requires the following computations.

First, the brain computes stimulus values that measure

the value of the outcomes generated by each action.

Second, it computes action costs that measure the costs

associated with each course of action. Third, it integrates

them into action values given by

Action Value ¼ Stimulus Value � Action Cost:

Finally, the action values are compared in order to make a

choice.

We now describe what is known about the computational

and neural basis of these processes.

How are stimulus values encoded?
Several human fMRI studies have placed individuals in

simple choice situations and have found that BOLD

activity in the medial orbitofrontal cortex (mOFC) corre-

lates with behavioral measures of stimulus values

[11,12,13�]. These findings are consistent with monkey

neurophysiology studies that have found stimulus value

coding in OFC neurons during choice tasks

[14,15��,16�,17] (Figure 1). Note, however, that we must

be cautious when comparing OFC findings across species

owing to potential connectivity differences [18–23].

In many circumstances the mapping from actions to

outcomes is probabilistic, and the outcomes arise only

after a delay. The above-model is easily extended to

incorporate these complications by setting

Action Value ¼ E½Discounted Stimulus ValuejAction��
E½Discounted Action CostjAction�;

where E[ ] denotes the expectation operator, and both

stimulus values and action costs are discounted owing to

the temporal delay with which they occur. Human fMRI

papers have investigated the encoding of stimulus values
www.sciencedirect.com
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in this more complex setting. Tom et al. [24] studied

choices between random and certain monetary prizes and

found that activity in mOFC correlated with stimulus

values that were consistent with the predictions of Pro-

spect Theory [25], a successful behavioral theory of how

people evaluate risky payoffs. Levy et al. [26] have

extended these findings by showing that the mOFC

encodes stimulus values when there is ambiguity (i.e.,

incomplete knowledge) about the likelihood of different

outcomes. Kable and Glimcher [27] studied choices be-

tween immediate and delayed monetary payoffs and

found stimulus value signals for the delayed payoffs in

an area of ventromedial prefrontal cortex adjacent to

mOFC. The signals were a good match with the beha-

vioral data: individuals with stimulus value signals that

discounted the future more steeply were also less likely to

delay gratification.

Several studies have begun to characterize the code used

by the OFC to encode values. Two important findings

have come from these investigations. First, there does not

seem to be an anatomical dissociation between appetitive

and aversive stimulus value coding. In related fMRI

studies, Tom et al. [24] found that the same area of

mOFC correlated positively with potential monetary

gains and negatively with potential losses, and Plassmann

et al. [28] found that mOFC activity correlated positively

with the appetitiveness of foods and negatively with their

aversiveness. Second, stimulus value signals are context

independent. Padoa-Schioppa and Assad [16�] found that

the stimulus value signals satisfy ‘menu-independence’,

so that the value assigned to one stimulus does not

depend on which other stimuli are in the choice set. This

property is important because it guarantees consistency

across decision situations. More recently Padoa-Schioppa

[15��] has found that stimulus value neurons in the OFC

exhibit range adaptation, so that a given increase in value

induces a larger change in firing rates when the range of

potential values for a stimulus is small. This property is

important because it allows single neurons to encode

stimulus values in contexts where the range of potential

values is small (e.g., $0–$2) or large (e.g., $0–$100 000).

How are stimulus values computed?
A popular theory states that stimulus values are learned

through reinforcement learning and retrieved in OFC at

the time of choice [2,9,29]. Although some evidence

suggests that this process is at work in settings where

animals repeatedly face a small number of stimuli [30], it

cannot account for all observed behavior because humans

are able to evaluate novel stimuli. We propose an alterna-

tive theory of stimulus value computation that takes

advantage of the fact that most stimuli are complex

bundles of more basic attributes (e.g., foods can be

described by a list of perceptual properties such as size,

color, and texture). Animals can evaluate any stimulus by

learning the value of basic attributes, and then integrating
www.sciencedirect.com
over them. This mechanism is more efficient because less

information needs to be learned.

The conditioning theory has been extensively reviewed

elsewhere [2,9,18,31], therefore we focus on what is

known about the validity of the integration hypothesis.

If it is correct, there should be neurons encoding the

attributes associated with the stimulus being evaluated.

For example, in the case of choices among lotteries, the

model predicts the existence of neurons encoding stat-

istics such as the expected value and variance.

Evidence consistent with the integration hypothesis

comes from Kennerley et al. [32]. They found neurons

in ACC, OFC, and LPFC neurons encoding the prob-

ability, magnitude, and effort associated with different

options. Additional evidence is provided by the fMRI

experiments discussed below.

Stimulus valuation in complex decision
situations
Two recent human fMRI studies provide clues about how

the brain has adapted to solve more sophisticated choice

problems, such as dietary decisions with long-term con-

sequences, or complex social decisions. In order to make

good choices in these domains, the brain needs to com-

pute the value of attributes such as the impact of the

choice on future health, or on others’ well-being. Hare

et al. [33��] studied dietary choices that involve self-

control. Subjects made choices between stimuli that

varied in their taste and health properties, which were

measured independently. The study found that activity

in the OFC encoded stimulus values regardless of the

extent to which health or taste considerations drove the

choices. However, health information had a greater influ-

ence on the OFC value signals (and choices) when a

region of left DLPFC was activated. A functional con-

nectivity analysis suggested that DLPFC might modulate

the weight placed on different attributes during value

computation in OFC (Figure 1).

More evidence that OFC integrates separate attributes

into a stimulus value comes from an fMRI study of

charitable decision-making. Hare et al. [34�] found that

activity in OFC correlated with behavioral measures of

the value that subject assigned to the charities. Moreover,

functional connectivity analyses suggest that the OFC

value signal integrated inputs from anterior insula and

pSTC, areas that are thought to be crucial for social

cognition. These findings suggest that these other vari-

ables are computed outside OFC, and that the infor-

mation is then passed there to be integrated into

stimulus values.

Interestingly, in both of the studies the effect operated by

modulating activity in inferior frontal gyrus (IFG, BA 9),

which might serve as a conduit of ‘cognitive information’
Current Opinion in Neurobiology 2010, 20:262–270
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Figure 1

Stimulus value is reflected in VMPFC activity. (a) The overlay map shows the peak activations in mOFC/ACC for three fMRI studies of goal-directed

decision-making. The peak from a study by Chib et al. [72] investigating decisions using consumer goods, food, and monetary rewards is shown in red.

Current Opinion in Neurobiology 2010, 20:262–270 www.sciencedirect.com



Neural computations associated with goal-directed choice Rangel and Hare 265
into the OFC. Consistent with this hypothesis, the appli-

cation of slow frequency repetitive transcranial magnetic

stimulation over this area has been shown to affect pur-

chasing [35], gambling [36], and social decisions [37,38].

How are action costs encoded and
computed?
Almost every choice we make has costs associated with it.

These costs come in two types. First are the costs of the

actions required to obtain the stimuli, such as effort.

Second are aversive stimuli that are bundled with the

desired outcome. For example, purchasing a book

requires giving up money. The key distinction between

them is whether the cost is tied to the action or to the

outcome. The distinction is meaningful because, for

example, one can decrease the effort costs associated

with purchasing an item (say by changing the physical

distance to the store) without changing the price that has

to be paid for the item.

Both types of costs have been investigated in the litera-

ture. Hare et al. [13�] studied purchasing decisions using

fMRI and found that whereas the mOFC encoded the

value of the items regardless of price, a more lateral area of

OFC encoded the net value of the purchases, and thus

reflected the costs of the stimuli. Talmi et al. [39�] studied

stimulus value coding in a setting in which earning a

monetary reward required getting electric shocks and

found that the stimulus value signals in mOFC decreased

with the size of the shocks.

Rudebeck et al. [40] investigated the difference between

stimulus and effort-based action value coding. Macaques

were asked to make choices between actions, without any

visual stimulus associated with them, or between visual

stimuli that did not have a fixed relationship with the

actions used to indicate choices. The reward contingen-

cies changed probabilistically over time. They found that

lesions to the ACC sulcus, but not to the OFC, impaired

action based choices, and that the opposite was true for

stimulus based choices.

The results in this section suggest that there might be a

dissociation between areas involved in encoding stimulus

costs, predominantly in the OFC, and areas involved

in encoding action costs, predominantly in ACC. This

statement might seem at odds with previous findings
Peak activity for choices over gambles representing both monetary gain and

peak for decisions about charitable donations from Hare et al. [34�]. Example

box of the corresponding color. (b) The MRI image shows the placement of e

the task structure is shown in the upper middle and below that a choice cu

graph on the far right shows the firing rate for a stimulus selective neuron. Fir

select it. Images in part B were adapted from Ref. [14]. (c) The renderings on

modulate value computations in mOFC as reported by Hare et al. [33��]. By in

unhealthy food items in the dietary self-control task. Dieters who successfu

compared to those subjects who did not use self-control. However, the top gr

self-control was successful than on trials where self-control failed. The botto

and health attributes into value signals computed in mOFC, whereas non-se
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[19,41], but the apparent puzzle has to do with a mis-

understanding in the existing literature that has treated

delays in reward delivery as costs, and not as outcome

attributes.

How are action values encoded and
computed?
The computational model described above predicts that

there should be neurons encoding each of the action

values, regardless of whether the action is taken or not.

Samejima et al. [42] recorded from striatal neurons during

a probabilistic binary choice task and found neurons

encoding the action values. In a closely related study

Lau and Glimcher [43] found that about 60% of phasically

active neurons in the caudate encoded either the value of

particular actions (early in the trial) or the value of the

chosen action (later in the trial). Kennerley et al. [32]

found that most of the neurons that responded to both

stimulus values and action costs were in the ACC, as

opposed to OFC and LPFC. A related human fMRI study

[44] found that BOLD activity in the dorsal ACC corre-

lated with the action values during an effortful reward

harvesting task.

Action value signals have been found in other areas

besides the ACC. Kim et al. [45] recorded in DLPFC

while monkeys chose either a left or a right eye move-

ment associated with a larger delay reward or a smaller

earlier reward. They found that a significant fraction of

DLPFC neurons encoded the discounted value of the

prize associated with one of the actions, but not the other,

and they did before the choice was indicated by the

animal. A recent human fMRI study [46] in which sub-

jects had to chose between a button press or an eye

movement in every trial found action value representa-

tions in supplementary motor areas. A related monkey

neurophysiology study [47] also found signals consistent

with action value coding in single SMA neurons. These

findings suggest a dissociation between the OFC and

areas of the ACC and SMA in goal-directed choice, with

the former being specialized in the encoding of stimulus

values, and the latter in the encoding of action values

[19,32].

An important open question is how are the stimulus

values and action costs integrated into action values.

One possibility that deserves further investigation is that
loss from Tom et al. [24] is shown in green. Yellow voxels represent the

s of the stimuli associated with each peak are shown on the right inside a

lectrodes in area 13 from Padoa-Schioppa and Assad [14]. A diagram of

rve showing the relative preference for juice A compared to juice B. The

ing increases with the value of juice A regardless of the action required to

the left illustrate a potential pathway through which DLPFC activity might

hibiting activity in a region of BA 46, DLPFC might bring down the value of

lly exercised self-control in this task had greater activity in left DLPFC

aph shows that within each group there was greater DLPFC activity when

m graph shows that successful self-controllers incorporated both taste

lf-controllers computed values based on tastes alone.
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Figure 2

(a) Illustration of the main components of the diffusion model of perceptual decision-making. Evidence E in favor of a decision can be strong (black) or

weak (gray) and is integrated over time. A decision is made when a common threshold is reached. (b) Illustration of the main components of the

urgency-gating model of Cisek [60]. Now evidence is not integrated over time. Instead it is multiplied by an urgency signal u and a decision is made

when x � u reaches a common decision threshold. (c) Data generated by the two models (top and middle) and actual behavior for a typical subject

(bottom) in trials in which the first few pieces of evidence were biased for or against the decision. As can be seen in the bottom panel, the urgency

model correctly predicts the absence of differences between the two models, but the diffusion model does not. (d) Continuous version of the

Newsome–Shadlen perceptual discrimination task in which a subset of otherwise randomly moving dots move coherently in some direction. The

animal indicates its guess about the direction of coherent movement at any time through an eye movement. Correct responses are rewarded. (e) Basic

architecture of the Bayesian population model of Beck et al. [63��]. Each graph summarizes neural activity in an area at a particular instant of the

decision task. SCb: bursting neurons in the superior colliculus. The x-axis denotes the preferred direction of movement for a given neuron. The y-axis

denotes the local firing rate for that neuron. The model consists of a network with three interconnected layers of neurons with Gaussian tuning curves.

Current Opinion in Neurobiology 2010, 20:262–270 www.sciencedirect.com
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this might be done by separate ACC-striatal and OFC-

striatal loops that converge in the caudate.

How are action values compared to make a
choice?
The final stage in making a decision involves the com-

parison of the action values in order to make a choice. A

significant amount of behavioral evidence suggests that

the mapping from action values to choices is stochastic

and follows a soft-max (or logistic) functional form, and

that there is a speed-accuracy tradeoff. Two of the most

important open questions in the field have to do with how

the stochastic choice process is implemented: What

exactly is the algorithm used by the brain to compare

the action values? How is the comparison process imple-

mented by the brain?

The first question has been addressed using a combi-

nation of modeling and psychometrics, mostly in the

realm of perceptual decision-making (see Refs. [48–50]

for outstanding recent reviews). A first class of models has

approached the problem at the systems level by specify-

ing the dynamic processes through which action values

are compared. Most of the models that have been pro-

posed are variations of the diffusion model. They assume

that information about the value of the different actions is

not directly accessible to the brain, but instead it needs to

be computed on the basis of sequential Gaussian random

samples of the underlying true values. Decisions are

made by dynamically and optimally integrating the

samples into a relative action value signal (e.g., Vac-

tion 1 � Vaction 2). The process terminates when the

relative value action becomes sufficiently biased towards

one of the choices [48,51–55]. Although this model has

been quite successful in providing qualitative and quan-

titative explanations in many domains, it also has limita-

tions that have begun to be addressed. First, the model

does not generalize easily to the case of more than two

alternatives. Bogacz and Gurney have proposed an exten-

sion in which decision thresholds depend on the amount

of conflict between the alternatives (see also Refs.

[56,57]). Second, a recent work by Cisek [58] and Ditter-

ich [59] has shown models with urgency signals that

increase with reaction time can account for a wider range

of psychometric data than equivalent parameterizations

of the diffusion model (Figure 2a–c). Finally, whereas

diffusion models are silent about how the comparison

process eventually triggers a motor response, Cisek [60]

has extended the logic of these models to show how this

could be accomplished, thus providing a joint model of

action selection and motor planning.
MT neurons encode the instantaneous direction of motion. LIP and SCb neu

represents the most likely direction of motion at any instant. (f) Activity in L

probabilities P(sjr) over the coherent direction of motion given the current le

progresses. (g) The activity in LIP can also be used to predict firing rates as

from Roitman and Shadlen [73] (right). (h) The model is also able to account fo

of Churchland et al. [57]. Red: four-choice experiment. Blue: two-choice ex
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The second class of models has addressed the same

problem using neuronal models of the comparison process

[50,61,62]. Although these models are significantly more

complicated, they have been able to provide a better

match to the behavioral and the neurometric data.

A new and highly promising alternative approach to these

models are the Bayesian decision-making models based

on probabilistic population codes of Pouget and collab-

orators (Figure 2d–h). In a series of recent papers [63��,64]

they have shown that as long as neurons follow approxi-

mately a Poisson-like distribution of spike counts, it is

possible to make fully optimal Bayesian perceptual de-

cisions using simple linear integration of neural activity,

even in the presence of a large number of options, or with

noise that changes within and across trials. Extending and

testing these ideas in the realm of value based decision-

making promises to be a profitable line of inquiry.

The best available evidence regarding potential substrates

of the comparison process comes from the study by Kim

et al. [45] described above. They found neurons in DLPFC

that encoded the value of one of the actions dynamically,

by ramping up their activity until a choice was made if the

action was associated with the best prize, and ramping

down activity otherwise. The dynamics of such neurons are

consistent with the models discussed above. On the basis of

human fMRI data Wunderlich et al. [46] have recently

argued on that parts of the ACC might play a crucial role in

the comparison process. Another hypothesis that has

received a significant amount of attention is that the choice

process might not be implemented in a single area, but

instead might reside in the dynamics of cortico-basal-

ganglia-thalamic loops [55,65–67].

Other clues about the neural basis of the comparator

process come from the existence of wide spread chosen

value signals reflecting the output of the comparison

process. Padoa-Schioppa and Assad [14] found OFC

neurons encoding the value of the chosen stimulus (often

called ‘chosen value’ neurons). Kepecs et al. [68] found rat

OFC neurons that encode either the ‘chosen value’ or a

measure of ‘uncertainty’ on having selected the best

stimulus. Several human fMRI choice studies have found

that BOLD activity in the OFC correlates with chosen

values [46,69,70]. Neurons encoding chosen values have

also been found in the ACC [32,71] and the caudate [43].

At a minimum, these findings suggest that the output of

the comparison process is passed to multiple areas, prob-

ably for the purpose of learning the value of actions via

reinforcement learning.
rons encode potential directions of motion. The population code in SCb

IP can be passed through a Bayesian decoder to compute posterior

vels of activity r. Note that the posteriors become sharper as time

a function of coherence and time (left), which match well the predictions

r the choice and reaction time data in the multi-option choice experiment

periment. a–c are from Ref. [60]. d–h are from Ref. [63��].
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Importantly, none of the existing models has been sys-

tematically compared against neural activity during goal-

directed choices. This exercise is one of the most pressing

open questions for the field since very little is known

about the neural substrates of action value comparisons.

Conclusions
Throughout the review we have emphasized a multitude

of important and pressing open questions. However, it is

important not to lose sight of the progress that has been

made. We now know that OFC neurons encode stimulus

values in a wide variety of contexts and that values are

sensitive to internal physiological and cognitive states.

We know that stimulus value signals respond to variables

such as delay and risk in ways that are consistent with

theories from behavioral economics. We know that during

complex decisions other cortical areas (such as DLPFC,

insula, and temporal cortex) are able to influence de-

cisions by modulating the computation of stimulus values

in OFC. We know that there is a dissociation between

ACC, which specializes in action cost and value coding,

and OFC, which specializes in stimulus value coding. We

have begun to characterize some of the key compu-

tational properties of the processes though which

stimulus values are compared to generate choices.

Furthermore, the growing combination of computational

models with sophisticated neuroscientific methods makes

it likely that many of the open questions listed here will

be resolved in the near future [4].
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