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Summary

In goal-directed decision-making animals choose between actions that are
associated with different reward outcomes (e.g, foods) and with different costs (e.g.,
effort). Rapid advances have been made over the last few years in our
understanding of the computations associated with goal-directed choices, and of
how those computations are implemented in the brain. We review some important
findings, with an emphasis on computational models, human fMRI, and monkey

neurophysiology studies.



Introduction

Consider a canonical decision making problem. Every day a hungry animal is
placed at the bottom of a Y-maze and is allowed to run towards the upper left or
right to collect a reward. The left arm leads to a highly liked food, but is also
associated with a high cost since the animal is required to swim to reach it. The right
end leads to a less desirable outcome, but does not require swimming. The foods

randomly change each day. How does the animal decide which course to take?

A growing body of work has shown this problem can be solved using two
very different approaches [1-4]. In one approach animals learn the value of each
action through trial-and-error using reinforcement learning, and then take the
action with the highest learned value [2,4-9]. This strategy requires little knowledge
on the part of the subject and can account for multiple aspects of behavior in many
domains, but is only able to pick the optimal action on average. In another approach,
animals estimate the value associated with each action every trial using knowledge
about their costs and benefits. With sufficient knowledge this approach, often called
‘goal-directed’ or ‘model-based’ decision-making [7,8,10], can do much better since

it is able to pick the optimal action in every trial [10].

Over the last decade significant advances have been made in understanding
how the brain makes goal-directed choices. We review important findings from the
last few years, as well as some of the most pressing open questions. Due to space

limitations we do not attempt to be comprehensive.

Computational framework

Models from psychology and economics suggest that goal-direct choice
requires the following computations. First, the brain computes stimulus values that
measure the value of the outcomes generated by each action. Second, it computes
action costs that measure the costs associated with each course of action. Third, it

integrates them into action values given by



Action Value = Stimulus Value - Action Cost.
Finally, the action values are compared in order to make a choice.

We now describe what is known about the computational and neural basis of

these processes.

How are stimulus values encoded?

Several human fMRI studies have placed individuals in simple choice
situations and have found that BOLD activity in the medial orbitofrontal cortex
(mOFC) correlates with behavioral measures of stimulus values [11-13]. These
findings are consistent with monkey neurophysiology studies that have found
stimulus value coding in OFC neurons during choice tasks [14-17] (Figure 1). Note,
however, that we must be cautious when comparing OFC findings across species due

to potential connectivity differences [18-23].

In many circumstances the mapping from actions to outcomes is
probabilistic, and the outcomes arise only after a delay. The model above is easily

extended to incorporate these complications by setting

Action Value = E[Discounted Stimulus Value|action]

- E[Discounted Action Cost|action],

where E[ | denotes the expectation operator, and both stimulus values and action
costs are discounted due to the temporal delay with which they occur. Human fMRI
papers have investigated the encoding of stimulus values in this more complex
setting. Tom et al. [24] studied choices between random and certain monetary
prizes and found that activity in mOFC correlated with stimulus values that were
consistent with the predictions of Prospect Theory [25], a successful behavioral
theory of how people evaluate risky payoffs. Levy et al. [26] have extended these
findings by showing that the mOFC encodes stimulus values when there is

ambiguity (i.e., incomplete knowledge) about the likelihood of different outcomes.



Kable and Glimcher [27] studied choices between immediate and delayed monetary
payoffs and found stimulus value signals for the delayed payoffs in an area of
ventromedial prefrontal cortex adjacent to mOFC. The signals were a good match
with the behavioral data: individuals with stimulus value signals that discounted the

future more steeply were also less likely to delay gratification.

Several studies have begun to characterize the code used by the OFC to
encode values. Two important findings have come from these investigations. First,
there does not seem to be an anatomical dissociation between appetitive and
aversive stimulus value coding. In related fMRI studies, Tom et al. [24] found that
the same area of mOFC correlated positively with potential monetary gains and
negatively with potential losses, and Plassmann et al. [28] found that mOFC activity
correlated positively with the appetitiveness of foods, and negatively with their
aversiveness. Second, stimulus value signals are context independent. Padoa-
Schioppa and Assad [16] found that the stimulus value signals satisfy ‘menu-
independence’, so that the value assigned to one stimulus does not depend on which
other stimuli are in the choice set. This property is important because it guarantees
consistency across decision situations. More recently Padoa-Schioppa [15] has
found that stimulus value neurons in the OFC exhibit range adaptation, so that a
given increase in value induces a larger change in firing rates when the range of
potential values for a stimulus is small. This property is important because it allows
single neurons to encode stimulus values in contexts where the range of potential

values is small (e.g., $0-$2) or large (e.g., $0-$100, 000).

How are stimulus values computed?

A popular theory states that stimulus values are learned through
reinforcement learning and retrieved in OFC at the time of choice [2,9,29]. Although

some evidence suggests that this process is at work in settings were animals



repeatedly face a small number of stimuli [30], it cannot account for all observed
behavior because humans are able to evaluate novel stimuli. We propose an
alternative theory of stimulus value computation that takes advantage of the fact
that most stimuli are complex bundles of more basic attributes (e.g., foods can be
described by a list of perceptual properties such as size, color and texture). Animals
can evaluate any stimulus by learning the value of basic attributes, and then
integrating over them. This mechanism is more efficient because less information

needs to be learned.

The conditioning theory has been extensively reviewed elsewhere
[2,9,18,31], therefore we focus on what is known about the validity of the
integration hypothesis. If it is correct, there should be neurons encoding the
attributes associated with the stimulus being evaluated. For example, in the case of
choices among lotteries, the model predicts the existence of neurons encoding

statistics such as the expected value and variance.

Evidence consistent with the integration hypothesis comes from Kennerly et
al. [32]. They recorded from ACC, OFC, and LPFC neurons in a choice task that varied
the probability, magnitude and effort associated with each action and found activity
reflecting these attributes in each of them. Additional evidence is provided by the

fMRI experiments discussed below.

Stimulus valuation in complex decision situations

Two recent recent human fMRI studies provide clues about how the brain
has adapted to solve more sophisticated choice problems, such as dietary decisions
with long-term consequences, or complex social decisions. In order to make good
choices in these domains, the brain needs to compute the value of attributes such as
the impact of the choice on future health, or on others’ well-being. Hare et al. [33]
studied dietary choices that involve self-control. Subjects made choices between

stimuli that varied in their taste and health properties, which were measured



independently. The study found that activity in the OFC encoded stimulus values
regardless of the extent to which health or taste considerations drove the choices.
However, health information had a greater influence on the OFC value signals (and
choices) when a region of left DLPFC was activated. A functional connectivity
analysis suggested that DLPFC might modulate the weight placed on different

attributes during value computation in OFC (Fig 1).

More evidence that OFC integrates separate attributes into a stimulus value
comes from an fMRI study of charitable decision-making. Hare et al. [34] found that
activity in OFC correlated with behavioral measures of the value that subject
assigned to the charities. Moreover, functional connectivity analyses suggest that
the OFC value signal integrated inputs from anterior insula and pSTC, areas that are
thought to be critical for social cognition. These findings suggest that these other
variables are computed outside OFC, and that the information is then passed there

to be integrated into stimulus values.

Interestingly, in both of the studies the effect operated by modulating activity
in inferior frontal gyrus (IFG, BA 9), which might serve as a conduit of ‘cognitive
information’ into the OFC. Consistent with this hypothesis, the application of slow
frequency repetitive transcranial magnetic stimulation over this area has been

shown to affect purchasing [35], gambling [36], and social decisions [37,38].

How are action costs encoded and computed?

Almost every choice we make has costs associated with it. These costs come
in two types. First are the costs of the actions required to obtain the stimuli, such as
effort. Second are aversive stimuli that are bundled with the desired outcome. For
example, purchasing a book requires giving up money. The key distinction between
them is whether the cost is tied to the action or to the outcome. The distinction is

meaningful because, for example, one can decrease the effort costs associated with



purchasing an item (say by changing the physical distance to the store) without

changing the price that has to be paid for the item.

Both types of costs have been investigated in the literature. Hare et al. [13]
studied purchasing decisions using fMRI and found that whereas the mOFC encoded
the value of the items regardless of price, a more lateral area of OFC encoded the net
value of the purchases, and thus reflected the costs of the stimuli. Talmi et al. [39]
studied stimulus value coding in a setting in which earning a monetary reward
required getting electric shocks and found that the stimulus value signals in mOFC

decreased with the size of the shocks.

Rudebeck et al. [40] investigated the difference between stimulus and effort-
based action value coding. Macaques were asked to make choices between actions,
without any visual stimulus associated with them, or between visual stimuli that did
not have a fixed relationship with the actions used to indicate choices. The reward
contingencies changed probabilistically over time. They found that lesions to the
ACC sulcus, but not to the OFC, impaired action based choices, and that the opposite

was true for stimulus based choices.

The results in this section suggest that there might be a dissociation between
areas involved involved in encoding stimulus costs, predominantly in the OFC, and
areas involved in encoding action costs, predominantly in ACC. This statement might
seems at odds with previous findings [19,41], but the apparent puzzle has to do with
a misunderstanding in the existing literature that has treated delays in reward

delivery as costs, and not as outcome attributes.

How are action values encoded and computed?

The computational model described above predicts that there should be
neurons encoding each of the action values, regardless of whether the action is
taken or not. Samejima et al. [42] recorded from striatal neurons during a

probabilistic binary choice task and found neurons encoding the action values. In a



closely related study Lau and Glimcher [43] found that about 60% of phasically
active neurons in the caudate encoded either the value of particular actions (early in
the trial) or the value of the chosen action (later in the trial). Kennerly et al. [32]
found that most of the neurons that responded to both stimulus values and action
costs were in the ACC, as opposed to OFC and LPFC. A related human fMRI study
[44] found that BOLD activity in the dorsal ACC correlated with the action values

during an effortful reward harvesting task.

Action value signals have been found in other areas besides the ACC. Kim et
al. [45] recorded in DLPFC while monkeys chose either a left or a right eye
movement associated with a larger delay reward or a smaller earlier reward. They
found that a significant fraction of DLPFC neurons encoded the discounted value of
the prize associated with one of the actions, but not the other, and they did before
the choice was indicated by the animal. A recent human fMRI study [46] in which
subjects had to chose between a button press or an eye movement in every trial
found action value representations in supplementary motor areas. A related
monkey neurophysiology study [47] also found signals consistent with action value
coding in single SMA neurons. These findings suggest a dissociation between the
OFC and areas of the ACC and SMA in goal-directed choice, with the former being
specialized in the encoding of stimulus values, and the later in the encoding of action

values [19,32].

An important open question is how are the stimulus values and action costs
integrated into action values. One possibility that deserves further investigation is
that this might be done by separate ACC-striatal and OFC-striatal loops that

converge in the caudate.

How are action values compared to make a choice?

The final stage in making a decision involves the comparison of the action

values in order to make a choice. A significant amount of behavioral evidence



suggests that the mapping from action values to choices is stochastic and follows a
soft-max (or logistic) functional form, and that there is a speed-accuracy tradeoff.
Two of the most important open questions in the field have to do with how the
stochastic choice process is implemented: What exactly is the algorithm used by the
brain to compare the action values? How is the comparison process implemented by

the brain?

The first question has been addressed using a combination of modeling and
psychometrics, mostly in the realm of perceptual decision-making (see [48-50] for
outstanding recent reviews). A first class of models has approached the problem at
the systems level by specifying the dynamic processes through which action values
are compared. Most of the models that have been proposed are variations of the
diffusion model. They assume that information about the value of the different
actions is not directly accessible to the brain, but instead it needs to be computed
based on sequential Gaussian random samples of the underlying true values.
Decisions are made by dynamically and optimally integrating the samples into a
relative action value signal (e.g., Vaction 1 = Vaction 2). The process terminates when the
relative value action becomes sufficiently biased towards one of the choices [48,51-
55]. Although this model has been quite successful in providing qualitative and
quantitative explanations in many domains, it also has limitations that have begun
to be addressed. First, the model does not generalize easily to the case of more than
two alternatives. Bogacz and Gurney have proposed an extension in which decision
thresholds depend on the amount of conflict between the alternatives (see also
[56,57]). Second, recent work by Cisek [58] and Ditterich [59] has shown models
with urgency signals that increase with reaction time can account for a wider range
of psychometric data than equivalent parameterizations of the diffusion model
(Figure 2A-C). Finally, whereas diffusion models are silent about how the
comparison process eventually triggers a motor response, Cisek [60] has extended
the logic of these models to show how this could be accomplished, thus providing a

joint model of action selection and motor planning.



The second class of models has addressed the same problem using neuronal
models of the comparison process [50,61,62]. Although these models are
significantly more complicated, they have been able to provide a better match to the

behavioral and the neurometric data.

A new and highly promising alternative approach to these models are the
Bayesian decision-making models based on probabilistic population codes of Pouget
and collaborators (Figure 2D-H). In a series of recent papers [63,64] they have
shown that as long as neurons follow approximately a Poisson-like distribution of
spike counts, it is possible to make fully optimal Bayesian perceptual decisions using
simple linear integration of neural activity, even in the presence of a large number of
options, or with noise that changes within and across trials. Extending and testing
these ideas in the realm of value based decision-making promises to be a profitable

line of inquiry.

The best available evidence regarding potential substrates of the comparison
process comes from the study by Kim et al. [45] described above. They found
neurons in DLPFC that encoded the value of one of the actions dynamically, by
ramping up their activity until a choice was made if the action was associated with
the best prize, and ramping down activity otherwise. The dynamics of such neurons
are consistent with the models discussed above. On the basis of human fMRI data
Wunderlich et al. [46] have recently argued on that parts of the ACC might play a
critical role in the comparison process. Another hypothesis that has received a
significant amount of attention is that the choice process might not be implemented
in a single area, but instead might reside in the dynamics of cortico-basal-ganglia-

thalamic loops [55,65-67].

Other clues about the neural basis of the comparator process come from the
existence of wide spread chosen value signals reflecting the output of the
comparison process. Padoa-Schioppa and Assad [14] found OFC neurons encoding
the value of the chosen stimulus (often called ‘chosen value’ neurons). Kepecs et al.

[68] found rat OFC neurons that encode either the ‘chosen value’ or a measure of

10



‘uncertainty’ on having selected the best stimulus. Several human fMRI choice
studies have found that BOLD activity in the OFC correlates with chosen values
[46,69,70]. Neurons encoding chosen values have also been found in the ACC [32,71]
and the caudate [43]. At a minimum, these findings suggest that the output of the
comparison process is passed to multiple areas, probably for the purpose of

learning the value of actions via reinforcement learning.

Importantly, none of the existing models has been systematically compared
against neural activity during goal directed choices. This exercise is one of the most
pressing open questions for the field since very little is known about the neural

substrates of action value comparisons.

Conclusions

Throughout the review we have emphasized a multitude of important and
pressing open questions. However, it is important not to lose sight of the progress
that has been made. We now know that OFC neurons encode stimulus values in a
wide variety of contexts and that values are sensitive to internal physiological and
cognitive states. We know that stimulus value signals respond to variables such as
delay and risk in ways that are consistent with theories from behavioral economics.
We know that during complex decisions other cortical areas (such as DLPFC, insula,
and temporal cortex) are able to influence decisions by modulating the computation
of stimulus values in OFC. We know that there is a dissociation between ACC, which
specializes in action cost and value coding, and OFC, which specializes in stimulus
value coding. We have begun to characterize some of the key computational
properties of the processes though which stimulus values are compared to generate
choices. Furthermore, the growing combination of computational models with
sophisticated neuroscientific methods makes it likely that many of the open

questions listed here will be resolved in the near future [4].
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Figure legends

Figure 1. Stimulus value is reflected in VMPFC activity. A) The overlay map shows
the peak activations in mOFC/ACC for three fMRI studies of goal-directed decision-
making. The peak from a study by Chib et al. [72] investigating decisions using
consumer goods, food, and monetary rewards is shown in red. Peak activity for
choices over gambles representing both monetary gain and loss from Tom et al.
[24]is shown in green. Yellow voxels represent the peak for decisions about
charitable donations from Hare et al. [34]. Examples of the stimuli associated with
each peak are shown on the right inside a box of the corresponding color. B) The
MRI image shows the placement of electrodes in area 13 from Padoa-Schioppa et al.
[14]. A diagram of the task structure is shown in the upper middle and below that a
choice curve showing the relative preference for juice A compared to juice B. The
graph on the far right shows the firing rate for a stimulus selective neuron. Firing
increases with the value of juice A regardless of the action required to select it.
Images in part B were adapted from [14]. C) The renderings on the left illustrate a
potential pathway through which DLPFC activity might modulate value
computations in mOFC as reported by Hare et al. [33]. By inhibiting activity in a
region of BA 46, DLPFC might bring down the value of unhealthy food items in the
dietary self-control task. Dieters who successfully exercised self-control in this task
had greater activity in left DLPFC compared to those subjects who did not use self-
control. However, the top graph shows that within each group there was greater
DLPFC activity when self-control was successful than on trials where self-control
failed. The bottom graph shows that successful self-controlers incorporated both
taste and health attributes into value signals computed in mOFC, whereas non-self-

controlers computed values based on tastes alone.
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Figure 2. A) lllustration of the main components of the diffusion model of perceptual
decision-making. Evidence E in favor of a decision can be strong (black) or weak
(gray) and is integrated over time. A decision is made when a common threshold is
reached. B) Illustration of the main components of the urgency-gating model of [60].
Now evidence is not integrated over time. Instead it is multiplied by an urgency
signal u and a decision is made when x.u reaches a common decision threshold. C)
Data generated by the two models (top and middle) and actual behavior for a typical
subject (bottom) in trials in which the first few pieces of evidence were biased for or
against the decision. As can be seen in the bottom panel, the urgency model
correctly predicts the absence of differences between the two models, but the
diffusion model does not. D) Continuous version of the Newsome-Shadlen
perceptual discrimination task in which a subset of otherwise randomly moving
dots move coherently in some direction. The animal indicates its guess about the
direction of coherent movement at any time through an eye-movement. Correct
responses are rewarded. E) Basic architecture of the Bayesian population model of
Beck et al. [63]. Each graph summarizes neural activity in an area at a particular
instant of the decision task. SCb: bursting neurons in the superior colliculus. The x-
axis denotes the preferred direction of movement for a given neuron. The y-axis
denotes the local firing rate for that neuron. The model consists of a network with
three interconnected layers of neurons with Gaussian tuning curves. MT neurons
encode the instantaneous direction of motion. LIP and SCb neurons encode potential
directions of motion. The population code in SCb represents the most likely
direction of motion at any instant. F) Activity in LIP can be passed through a
Bayesian decoder to compute posterior probabilities P(s|r) over the coherent
direction of motion given the current levels of activity r. Note that the posteriors
become sharper as time progresses. G) The activity in LIP can also be used to predict
firing rates as a function of coherence and time (left), which match well the
predictions from Roitman and Shadlen [73] (right). H) The model is also able to
account for the choice and reaction time data in the multi-option choice experiment
of Churchland et al. [57]. Red: four-choice experiment. Blue: two-choice experiment.

A-C are from [60]. D-H are from [63].
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