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Summary	
  

In	
  goal-­‐directed	
  decision-­‐making	
  animals	
  choose	
  between	
  actions	
  that	
  are	
  

associated	
  with	
  different	
  reward	
  outcomes	
  (e.g,	
  foods)	
  and	
  with	
  different	
  costs	
  (e.g.,	
  

effort).	
  Rapid	
  advances	
  have	
  been	
  made	
  over	
  the	
  last	
  few	
  years	
  in	
  our	
  

understanding	
  of	
  the	
  computations	
  associated	
  with	
  goal-­‐directed	
  choices,	
  and	
  of	
  

how	
  those	
  computations	
  are	
  implemented	
  in	
  the	
  brain.	
  We	
  review	
  some	
  important	
  

findings,	
  with	
  an	
  emphasis	
  on	
  computational	
  models,	
  human	
  fMRI,	
  and	
  monkey	
  

neurophysiology	
  studies.	
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Introduction	
  

Consider	
  a	
  canonical	
  decision	
  making	
  problem.	
  Every	
  day	
  a	
  hungry	
  animal	
  is	
  

placed	
  at	
  the	
  bottom	
  of	
  a	
  Y-­‐maze	
  and	
  is	
  allowed	
  to	
  run	
  towards	
  the	
  upper	
  left	
  or	
  

right	
  to	
  collect	
  a	
  reward.	
  The	
  left	
  arm	
  leads	
  to	
  a	
  highly	
  liked	
  food,	
  but	
  is	
  also	
  

associated	
  with	
  a	
  high	
  cost	
  since	
  the	
  animal	
  is	
  required	
  to	
  swim	
  to	
  reach	
  it.	
  The	
  right	
  

end	
  leads	
  to	
  a	
  less	
  desirable	
  outcome,	
  but	
  does	
  not	
  require	
  swimming.	
  The	
  foods	
  

randomly	
  change	
  each	
  day.	
  How	
  does	
  the	
  animal	
  decide	
  which	
  course	
  to	
  take?	
  

A	
  growing	
  body	
  of	
  work	
  has	
  shown	
  this	
  problem	
  can	
  be	
  solved	
  using	
  two	
  

very	
  different	
  approaches	
  [1-­‐4].	
  	
  In	
  one	
  approach	
  animals	
  learn	
  the	
  value	
  of	
  each	
  

action	
  through	
  trial-­‐and-­‐error	
  using	
  reinforcement	
  learning,	
  and	
  then	
  take	
  the	
  

action	
  with	
  the	
  highest	
  learned	
  value	
  [2,4-­‐9].	
  This	
  strategy	
  requires	
  little	
  knowledge	
  

on	
  the	
  part	
  of	
  the	
  subject	
  and	
  can	
  account	
  for	
  multiple	
  aspects	
  of	
  behavior	
  in	
  many	
  

domains,	
  but	
  is	
  only	
  able	
  to	
  pick	
  the	
  optimal	
  action	
  on	
  average.	
  In	
  another	
  approach,	
  

animals	
  estimate	
  the	
  value	
  associated	
  with	
  each	
  action	
  every	
  trial	
  using	
  knowledge	
  

about	
  their	
  costs	
  and	
  benefits.	
  With	
  sufficient	
  knowledge	
  this	
  approach,	
  often	
  called	
  

‘goal-­‐directed’	
  or	
  ‘model-­‐based’	
  decision-­‐making	
  [7,8,10],	
  can	
  do	
  much	
  better	
  since	
  

it	
  is	
  able	
  to	
  pick	
  the	
  optimal	
  action	
  in	
  every	
  trial	
  [10].	
  	
  

	
   Over	
  the	
  last	
  decade	
  significant	
  advances	
  have	
  been	
  made	
  in	
  understanding	
  

how	
  the	
  brain	
  makes	
  goal-­‐directed	
  choices.	
  We	
  review	
  important	
  findings	
  from	
  the	
  

last	
  few	
  years,	
  as	
  well	
  as	
  some	
  of	
  the	
  most	
  pressing	
  open	
  questions.	
  Due	
  to	
  space	
  

limitations	
  we	
  do	
  not	
  attempt	
  to	
  be	
  comprehensive.	
  

	
  

Computational	
  framework	
  

Models	
  from	
  psychology	
  and	
  economics	
  suggest	
  that	
  goal-­‐direct	
  choice	
  

requires	
  the	
  following	
  computations.	
  First,	
  the	
  brain	
  computes	
  stimulus	
  values	
  that	
  

measure	
  the	
  value	
  of	
  the	
  outcomes	
  generated	
  by	
  each	
  action.	
  Second,	
  it	
  computes	
  

action	
  costs	
  that	
  measure	
  the	
  costs	
  associated	
  with	
  each	
  course	
  of	
  action.	
  Third,	
  it	
  

integrates	
  them	
  into	
  action	
  values	
  given	
  by	
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Action	
  Value	
  =	
  	
  Stimulus	
  Value	
  –	
  Action	
  Cost.	
  

Finally,	
  the	
  action	
  values	
  are	
  compared	
  in	
  order	
  to	
  make	
  a	
  choice.	
  	
  

	
   We	
  now	
  describe	
  what	
  is	
  known	
  about	
  the	
  computational	
  and	
  neural	
  basis	
  of	
  

these	
  processes.	
  	
  

	
  

How	
  are	
  stimulus	
  values	
  encoded?	
  

Several	
  human	
  fMRI	
  studies	
  have	
  placed	
  individuals	
  in	
  simple	
  choice	
  

situations	
  and	
  have	
  found	
  that	
  BOLD	
  activity	
  in	
  the	
  medial	
  orbitofrontal	
  cortex	
  

(mOFC)	
  correlates	
  with	
  behavioral	
  measures	
  of	
  stimulus	
  values	
  [11-­‐13].	
  These	
  

findings	
  are	
  consistent	
  with	
  monkey	
  neurophysiology	
  studies	
  that	
  have	
  found	
  

stimulus	
  value	
  coding	
  in	
  OFC	
  neurons	
  during	
  choice	
  tasks	
  [14-­‐17]	
  (Figure	
  1).	
  Note,	
  

however,	
  that	
  we	
  must	
  be	
  cautious	
  when	
  comparing	
  OFC	
  findings	
  across	
  species	
  due	
  

to	
  potential	
  connectivity	
  differences	
  [18-­‐23].	
  

In	
  many	
  circumstances	
  the	
  mapping	
  from	
  actions	
  to	
  outcomes	
  is	
  

probabilistic,	
  and	
  the	
  outcomes	
  arise	
  only	
  after	
  a	
  delay.	
  The	
  model	
  above	
  is	
  easily	
  

extended	
  to	
  incorporate	
  these	
  complications	
  by	
  setting	
  	
  

Action	
  Value	
  	
  =	
  	
  E[Discounted	
  Stimulus	
  Value|action]	
  	
  

–	
  E[Discounted	
  Action	
  Cost|action],	
  

where	
  E[	
  ]	
  denotes	
  the	
  expectation	
  operator,	
  and	
  both	
  stimulus	
  values	
  and	
  action	
  

costs	
  are	
  discounted	
  due	
  to	
  the	
  temporal	
  delay	
  with	
  which	
  they	
  occur.	
  	
  Human	
  fMRI	
  

papers	
  have	
  investigated	
  the	
  encoding	
  of	
  stimulus	
  values	
  in	
  this	
  more	
  complex	
  

setting.	
  Tom	
  et	
  al.	
  [24]	
  studied	
  choices	
  between	
  random	
  and	
  certain	
  monetary	
  

prizes	
  and	
  found	
  that	
  activity	
  in	
  mOFC	
  correlated	
  with	
  stimulus	
  values	
  that	
  were	
  

consistent	
  with	
  the	
  predictions	
  of	
  Prospect	
  Theory	
  [25],	
  a	
  successful	
  behavioral	
  

theory	
  of	
  how	
  people	
  evaluate	
  risky	
  payoffs.	
  Levy	
  et	
  al.	
  [26]	
  have	
  extended	
  these	
  

findings	
  by	
  showing	
  that	
  the	
  mOFC	
  encodes	
  stimulus	
  values	
  when	
  there	
  is	
  

ambiguity	
  (i.e.,	
  incomplete	
  knowledge)	
  about	
  the	
  likelihood	
  of	
  different	
  outcomes.	
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Kable	
  and	
  Glimcher	
  [27]	
  studied	
  choices	
  between	
  immediate	
  and	
  delayed	
  monetary	
  

payoffs	
  and	
  found	
  stimulus	
  value	
  signals	
  for	
  the	
  delayed	
  payoffs	
  in	
  an	
  area	
  of	
  

ventromedial	
  prefrontal	
  cortex	
  adjacent	
  to	
  mOFC.	
  The	
  signals	
  were	
  a	
  good	
  match	
  

with	
  the	
  behavioral	
  data:	
  individuals	
  with	
  stimulus	
  value	
  signals	
  that	
  discounted	
  the	
  

future	
  more	
  steeply	
  were	
  also	
  less	
  likely	
  to	
  delay	
  gratification.	
  	
  

	
   Several	
  studies	
  have	
  begun	
  to	
  characterize	
  the	
  code	
  used	
  by	
  the	
  OFC	
  to	
  

encode	
  values.	
  Two	
  important	
  findings	
  have	
  come	
  from	
  these	
  investigations.	
  First,	
  

there	
  does	
  not	
  seem	
  to	
  be	
  an	
  anatomical	
  dissociation	
  between	
  appetitive	
  and	
  

aversive	
  stimulus	
  value	
  coding.	
  In	
  related	
  fMRI	
  studies,	
  Tom	
  et	
  al.	
  [24]	
  found	
  that	
  

the	
  same	
  area	
  of	
  mOFC	
  correlated	
  positively	
  with	
  potential	
  monetary	
  gains	
  and	
  

negatively	
  with	
  potential	
  losses	
  ,	
  and	
  Plassmann	
  et	
  al.	
  [28]	
  found	
  that	
  mOFC	
  activity	
  

correlated	
  positively	
  with	
  the	
  appetitiveness	
  of	
  foods,	
  and	
  negatively	
  with	
  their	
  

aversiveness.	
  Second,	
  stimulus	
  value	
  signals	
  are	
  context	
  independent.	
  Padoa-­‐

Schioppa	
  and	
  Assad	
  [16]	
  found	
  that	
  the	
  stimulus	
  value	
  signals	
  satisfy	
  ‘menu-­‐

independence’,	
  so	
  that	
  the	
  value	
  assigned	
  to	
  one	
  stimulus	
  does	
  not	
  depend	
  on	
  which	
  

other	
  stimuli	
  are	
  in	
  the	
  choice	
  set.	
  This	
  property	
  is	
  important	
  because	
  it	
  guarantees	
  

consistency	
  across	
  decision	
  situations.	
  More	
  recently	
  Padoa-­‐Schioppa	
  [15]	
  has	
  

found	
  that	
  stimulus	
  value	
  neurons	
  in	
  the	
  OFC	
  exhibit	
  range	
  adaptation,	
  so	
  that	
  a	
  

given	
  increase	
  in	
  value	
  induces	
  a	
  larger	
  change	
  in	
  firing	
  rates	
  when	
  the	
  range	
  of	
  

potential	
  values	
  for	
  a	
  stimulus	
  is	
  small.	
  This	
  property	
  is	
  important	
  because	
  it	
  allows	
  

single	
  neurons	
  to	
  encode	
  stimulus	
  values	
  in	
  contexts	
  where	
  the	
  range	
  of	
  potential	
  

values	
  is	
  small	
  (e.g.,	
  $0-­‐$2)	
  or	
  large	
  (e.g.,	
  $0-­‐$100,	
  000).	
  

	
   	
  

	
   	
  	
  

How	
  are	
  stimulus	
  values	
  computed?	
  	
  

	
   A	
  popular	
  theory	
  states	
  that	
  stimulus	
  values	
  are	
  learned	
  through	
  

reinforcement	
  learning	
  and	
  retrieved	
  in	
  OFC	
  at	
  the	
  time	
  of	
  choice	
  [2,9,29].	
  Although	
  

some	
  evidence	
  suggests	
  that	
  this	
  process	
  is	
  at	
  work	
  in	
  settings	
  were	
  animals	
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repeatedly	
  face	
  a	
  small	
  number	
  of	
  stimuli	
  [30],	
  it	
  cannot	
  account	
  for	
  all	
  observed	
  

behavior	
  because	
  humans	
  are	
  able	
  to	
  evaluate	
  novel	
  stimuli.	
  We	
  propose	
  an	
  

alternative	
  theory	
  of	
  stimulus	
  value	
  computation	
  that	
  takes	
  advantage	
  of	
  the	
  fact	
  

that	
  most	
  stimuli	
  are	
  complex	
  bundles	
  of	
  more	
  basic	
  attributes	
  (e.g.,	
  foods	
  can	
  be	
  

described	
  by	
  a	
  list	
  of	
  perceptual	
  properties	
  such	
  as	
  size,	
  color	
  and	
  texture).	
  Animals	
  

can	
  evaluate	
  any	
  stimulus	
  by	
  learning	
  the	
  value	
  of	
  basic	
  attributes,	
  and	
  then	
  

integrating	
  over	
  them.	
  This	
  mechanism	
  is	
  more	
  efficient	
  because	
  less	
  information	
  

needs	
  to	
  be	
  learned.	
  	
  

	
   The	
  conditioning	
  theory	
  has	
  been	
  extensively	
  reviewed	
  elsewhere	
  

[2,9,18,31],	
  therefore	
  we	
  focus	
  on	
  what	
  is	
  known	
  about	
  the	
  validity	
  of	
  the	
  

integration	
  hypothesis.	
  If	
  it	
  is	
  correct,	
  there	
  should	
  be	
  neurons	
  encoding	
  the	
  

attributes	
  associated	
  with	
  the	
  stimulus	
  being	
  evaluated.	
  For	
  example,	
  in	
  the	
  case	
  of	
  

choices	
  among	
  lotteries,	
  the	
  model	
  predicts	
  the	
  existence	
  of	
  neurons	
  encoding	
  

statistics	
  such	
  as	
  the	
  expected	
  value	
  and	
  variance.	
  	
  

Evidence	
  consistent	
  with	
  the	
  integration	
  hypothesis	
  comes	
  from	
  Kennerly	
  et	
  

al.	
  [32].	
  They	
  recorded	
  from	
  ACC,	
  OFC,	
  and	
  LPFC	
  neurons	
  in	
  a	
  choice	
  task	
  that	
  varied	
  

the	
  probability,	
  magnitude	
  and	
  effort	
  associated	
  with	
  each	
  action	
  and	
  found	
  activity	
  

reflecting	
  these	
  attributes	
  in	
  each	
  of	
  them.	
  Additional	
  evidence	
  is	
  provided	
  by	
  the	
  

fMRI	
  experiments	
  discussed	
  below.	
  	
  

	
  

Stimulus	
  valuation	
  in	
  complex	
  decision	
  situations	
  

	
   Two	
  recent	
  recent	
  human	
  fMRI	
  studies	
  provide	
  clues	
  about	
  how	
  the	
  brain	
  

has	
  adapted	
  to	
  solve	
  more	
  sophisticated	
  choice	
  problems,	
  such	
  as	
  dietary	
  decisions	
  

with	
  long-­‐term	
  consequences,	
  or	
  complex	
  social	
  decisions.	
  In	
  order	
  to	
  make	
  good	
  

choices	
  in	
  these	
  domains,	
  the	
  brain	
  needs	
  to	
  compute	
  the	
  value	
  of	
  attributes	
  such	
  as	
  

the	
  impact	
  of	
  the	
  choice	
  on	
  future	
  health,	
  or	
  on	
  others’	
  well-­‐being.	
  Hare	
  et	
  al.	
  [33]	
  

studied	
  dietary	
  choices	
  that	
  involve	
  self-­‐control.	
  Subjects	
  made	
  choices	
  between	
  

stimuli	
  that	
  varied	
  in	
  their	
  taste	
  and	
  health	
  properties,	
  which	
  were	
  measured	
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independently.	
  The	
  study	
  found	
  that	
  activity	
  in	
  the	
  OFC	
  encoded	
  stimulus	
  values	
  

regardless	
  of	
  the	
  extent	
  to	
  which	
  health	
  or	
  taste	
  considerations	
  drove	
  the	
  choices.	
  

However,	
  health	
  information	
  had	
  a	
  greater	
  influence	
  on	
  the	
  OFC	
  value	
  signals	
  (and	
  

choices)	
  when	
  a	
  region	
  of	
  left	
  DLPFC	
  was	
  activated.	
  A	
  functional	
  connectivity	
  

analysis	
  suggested	
  that	
  DLPFC	
  might	
  modulate	
  the	
  weight	
  placed	
  on	
  different	
  

attributes	
  during	
  value	
  computation	
  in	
  OFC	
  (Fig	
  1).	
  	
  

More	
  evidence	
  that	
  OFC	
  integrates	
  separate	
  attributes	
  into	
  a	
  stimulus	
  value	
  

comes	
  from	
  an	
  fMRI	
  study	
  of	
  charitable	
  decision-­‐making.	
  Hare	
  et	
  al.	
  [34]	
  found	
  that	
  

activity	
  in	
  OFC	
  correlated	
  with	
  behavioral	
  measures	
  of	
  the	
  value	
  that	
  subject	
  

assigned	
  to	
  the	
  charities.	
  Moreover,	
  functional	
  connectivity	
  analyses	
  suggest	
  that	
  

the	
  OFC	
  value	
  signal	
  integrated	
  inputs	
  from	
  anterior	
  insula	
  and	
  pSTC,	
  areas	
  that	
  are	
  

thought	
  to	
  be	
  critical	
  for	
  social	
  cognition.	
  These	
  findings	
  suggest	
  that	
  these	
  other	
  

variables	
  are	
  computed	
  outside	
  OFC,	
  and	
  that	
  the	
  information	
  is	
  then	
  passed	
  there	
  

to	
  be	
  integrated	
  into	
  stimulus	
  values.	
  

Interestingly,	
  in	
  both	
  of	
  the	
  studies	
  the	
  effect	
  operated	
  by	
  modulating	
  activity	
  

in	
  inferior	
  frontal	
  gyrus	
  (IFG,	
  BA	
  9),	
  which	
  might	
  serve	
  as	
  a	
  conduit	
  of	
  ‘cognitive	
  

information’	
  into	
  the	
  OFC.	
  Consistent	
  with	
  this	
  hypothesis,	
  the	
  application	
  of	
  slow	
  

frequency	
  repetitive	
  transcranial	
  magnetic	
  stimulation	
  over	
  this	
  area	
  has	
  been	
  

shown	
  to	
  affect	
  purchasing	
  [35],	
  gambling	
  [36],	
  and	
  social	
  decisions	
  [37,38].	
  

	
  

How	
  are	
  action	
  costs	
  encoded	
  and	
  computed?	
  

	
   Almost	
  every	
  choice	
  we	
  make	
  has	
  costs	
  associated	
  with	
  it.	
  These	
  costs	
  come	
  

in	
  two	
  types.	
  First	
  are	
  the	
  costs	
  of	
  the	
  actions	
  required	
  to	
  obtain	
  the	
  stimuli,	
  such	
  as	
  

effort.	
  Second	
  are	
  aversive	
  stimuli	
  that	
  are	
  bundled	
  with	
  the	
  desired	
  outcome.	
  For	
  

example,	
  purchasing	
  a	
  book	
  requires	
  giving	
  up	
  money.	
  The	
  key	
  distinction	
  between	
  

them	
  is	
  whether	
  the	
  cost	
  is	
  tied	
  to	
  the	
  action	
  or	
  to	
  the	
  outcome.	
  The	
  distinction	
  is	
  

meaningful	
  because,	
  for	
  example,	
  one	
  can	
  decrease	
  the	
  effort	
  costs	
  associated	
  with	
  



	
   7	
  

purchasing	
  an	
  item	
  (say	
  by	
  changing	
  the	
  physical	
  distance	
  to	
  the	
  store)	
  without	
  

changing	
  the	
  price	
  that	
  has	
  to	
  be	
  paid	
  for	
  the	
  item.	
  

Both	
  types	
  of	
  costs	
  have	
  been	
  investigated	
  in	
  the	
  literature.	
  Hare	
  et	
  al.	
  [13]	
  

studied	
  purchasing	
  decisions	
  using	
  fMRI	
  and	
  found	
  that	
  whereas	
  the	
  mOFC	
  encoded	
  

the	
  value	
  of	
  the	
  items	
  regardless	
  of	
  price,	
  a	
  more	
  lateral	
  area	
  of	
  OFC	
  encoded	
  the	
  net	
  

value	
  of	
  the	
  purchases,	
  and	
  thus	
  reflected	
  the	
  costs	
  of	
  the	
  stimuli.	
  Talmi	
  et	
  al.	
  [39]	
  

studied	
  stimulus	
  value	
  coding	
  in	
  a	
  setting	
  in	
  which	
  earning	
  a	
  monetary	
  reward	
  

required	
  getting	
  electric	
  shocks	
  and	
  found	
  that	
  the	
  stimulus	
  value	
  signals	
  in	
  mOFC	
  

decreased	
  with	
  the	
  size	
  of	
  the	
  shocks.	
  	
  

	
   Rudebeck	
  et	
  al.	
  [40]	
  investigated	
  the	
  difference	
  between	
  stimulus	
  and	
  effort-­‐

based	
  action	
  value	
  coding.	
  Macaques	
  were	
  asked	
  to	
  make	
  choices	
  between	
  actions,	
  

without	
  any	
  visual	
  stimulus	
  associated	
  with	
  them,	
  or	
  between	
  visual	
  stimuli	
  that	
  did	
  

not	
  have	
  a	
  fixed	
  relationship	
  with	
  the	
  actions	
  used	
  to	
  indicate	
  choices.	
  The	
  reward	
  

contingencies	
  changed	
  probabilistically	
  over	
  time.	
  They	
  found	
  that	
  lesions	
  to	
  the	
  

ACC	
  sulcus,	
  but	
  not	
  to	
  the	
  OFC,	
  impaired	
  action	
  based	
  choices,	
  and	
  that	
  the	
  opposite	
  

was	
  true	
  for	
  stimulus	
  based	
  choices.	
  	
  

The	
  results	
  in	
  this	
  section	
  suggest	
  that	
  there	
  might	
  be	
  a	
  dissociation	
  between	
  

areas	
  involved	
  involved	
  in	
  encoding	
  stimulus	
  costs,	
  predominantly	
  in	
  the	
  OFC,	
  and	
  

areas	
  involved	
  in	
  encoding	
  action	
  costs,	
  predominantly	
  in	
  ACC.	
  This	
  statement	
  might	
  

seems	
  at	
  odds	
  with	
  previous	
  findings	
  [19,41],	
  but	
  the	
  apparent	
  puzzle	
  has	
  to	
  do	
  with	
  

a	
  misunderstanding	
  in	
  the	
  existing	
  literature	
  that	
  has	
  treated	
  delays	
  in	
  reward	
  

delivery	
  as	
  costs,	
  and	
  not	
  as	
  outcome	
  attributes.	
  

	
  

How	
  are	
  action	
  values	
  encoded	
  and	
  computed?	
  

	
   The	
  computational	
  model	
  described	
  above	
  predicts	
  that	
  there	
  should	
  be	
  

neurons	
  encoding	
  each	
  of	
  the	
  action	
  values,	
  regardless	
  of	
  whether	
  the	
  action	
  is	
  

taken	
  or	
  not.	
  Samejima	
  et	
  al.	
  [42]	
  recorded	
  from	
  striatal	
  neurons	
  during	
  a	
  

probabilistic	
  binary	
  choice	
  task	
  and	
  found	
  neurons	
  encoding	
  the	
  action	
  values.	
  In	
  a	
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closely	
  related	
  study	
  Lau	
  and	
  Glimcher	
  [43]	
  found	
  that	
  about	
  60%	
  of	
  phasically	
  

active	
  neurons	
  in	
  the	
  caudate	
  encoded	
  either	
  the	
  value	
  of	
  particular	
  actions	
  (early	
  in	
  

the	
  trial)	
  or	
  the	
  value	
  of	
  the	
  chosen	
  action	
  (later	
  in	
  the	
  trial).	
  Kennerly	
  et	
  al.	
  [32]	
  

found	
  that	
  most	
  of	
  the	
  neurons	
  that	
  responded	
  to	
  both	
  stimulus	
  values	
  and	
  action	
  

costs	
  were	
  in	
  the	
  ACC,	
  as	
  opposed	
  to	
  OFC	
  and	
  LPFC.	
  A	
  related	
  human	
  fMRI	
  study	
  

[44]	
  found	
  that	
  BOLD	
  activity	
  in	
  the	
  dorsal	
  ACC	
  correlated	
  with	
  the	
  action	
  values	
  

during	
  an	
  effortful	
  reward	
  harvesting	
  task.	
  	
  

	
   Action	
  value	
  signals	
  have	
  been	
  found	
  in	
  other	
  areas	
  besides	
  the	
  ACC.	
  Kim	
  et	
  

al.	
  [45]	
  recorded	
  in	
  DLPFC	
  while	
  monkeys	
  chose	
  either	
  a	
  left	
  or	
  a	
  right	
  eye	
  

movement	
  associated	
  with	
  a	
  larger	
  delay	
  reward	
  or	
  a	
  smaller	
  earlier	
  reward.	
  They	
  

found	
  that	
  a	
  significant	
  fraction	
  of	
  DLPFC	
  neurons	
  encoded	
  the	
  discounted	
  value	
  of	
  

the	
  prize	
  associated	
  with	
  one	
  of	
  the	
  actions,	
  but	
  not	
  the	
  other,	
  and	
  they	
  did	
  before	
  

the	
  choice	
  was	
  indicated	
  by	
  the	
  animal.	
  A	
  recent	
  human	
  fMRI	
  study	
  [46]	
  in	
  which	
  

subjects	
  had	
  to	
  chose	
  between	
  a	
  button	
  press	
  or	
  an	
  eye	
  movement	
  in	
  every	
  trial	
  	
  

found	
  action	
  value	
  representations	
  in	
  supplementary	
  motor	
  areas.	
  A	
  related	
  

monkey	
  neurophysiology	
  study	
  [47]	
  also	
  found	
  signals	
  consistent	
  with	
  action	
  value	
  

coding	
  in	
  single	
  SMA	
  neurons.	
  These	
  findings	
  suggest	
  a	
  dissociation	
  between	
  the	
  

OFC	
  and	
  areas	
  of	
  the	
  ACC	
  and	
  SMA	
  in	
  goal-­‐directed	
  choice,	
  with	
  the	
  former	
  being	
  

specialized	
  in	
  the	
  encoding	
  of	
  stimulus	
  values,	
  and	
  the	
  later	
  in	
  the	
  encoding	
  of	
  action	
  

values	
  [19,32].	
  	
  

An	
  important	
  open	
  question	
  is	
  how	
  are	
  the	
  stimulus	
  values	
  and	
  action	
  costs	
  

integrated	
  into	
  action	
  values.	
  One	
  possibility	
  that	
  deserves	
  further	
  investigation	
  is	
  

that	
  this	
  might	
  be	
  done	
  by	
  separate	
  ACC-­‐striatal	
  and	
  OFC-­‐striatal	
  loops	
  that	
  

converge	
  in	
  the	
  caudate.	
  	
  

	
   	
  

How	
  are	
  action	
  values	
  compared	
  to	
  make	
  a	
  choice?	
  

	
   The	
  final	
  stage	
  in	
  making	
  a	
  decision	
  involves	
  the	
  comparison	
  of	
  the	
  action	
  

values	
  in	
  order	
  to	
  make	
  a	
  choice.	
  A	
  significant	
  amount	
  of	
  behavioral	
  evidence	
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suggests	
  that	
  the	
  mapping	
  from	
  action	
  values	
  to	
  choices	
  is	
  stochastic	
  and	
  follows	
  a	
  

soft-­‐max	
  (or	
  logistic)	
  functional	
  form,	
  and	
  that	
  there	
  is	
  a	
  speed-­‐accuracy	
  tradeoff.	
  

Two	
  of	
  the	
  most	
  important	
  open	
  questions	
  in	
  the	
  field	
  have	
  to	
  do	
  with	
  how	
  the	
  

stochastic	
  choice	
  process	
  is	
  implemented:	
  What	
  exactly	
  is	
  the	
  algorithm	
  used	
  by	
  the	
  

brain	
  to	
  compare	
  the	
  action	
  values?	
  How	
  is	
  the	
  comparison	
  process	
  implemented	
  by	
  

the	
  brain?	
  

	
   The	
  first	
  question	
  has	
  been	
  addressed	
  using	
  a	
  combination	
  of	
  modeling	
  and	
  

psychometrics,	
  mostly	
  in	
  the	
  realm	
  of	
  perceptual	
  decision-­‐making	
  (see	
  [48-­‐50]	
  for	
  

outstanding	
  recent	
  reviews).	
  	
  A	
  first	
  class	
  of	
  models	
  has	
  approached	
  the	
  problem	
  at	
  

the	
  systems	
  level	
  by	
  specifying	
  the	
  dynamic	
  processes	
  through	
  which	
  action	
  values	
  

are	
  compared.	
  Most	
  of	
  the	
  models	
  that	
  have	
  been	
  proposed	
  are	
  variations	
  of	
  the	
  

diffusion	
  model.	
  They	
  assume	
  that	
  information	
  about	
  the	
  value	
  of	
  the	
  different	
  

actions	
  is	
  not	
  directly	
  accessible	
  to	
  the	
  brain,	
  but	
  instead	
  it	
  needs	
  to	
  be	
  computed	
  

based	
  on	
  sequential	
  Gaussian	
  random	
  samples	
  of	
  the	
  underlying	
  true	
  values.	
  

Decisions	
  are	
  made	
  by	
  dynamically	
  and	
  optimally	
  integrating	
  the	
  samples	
  into	
  a	
  

relative	
  action	
  value	
  signal	
  (e.g.,	
  Vaction	
  1	
  –	
  Vaction	
  2).	
  The	
  process	
  terminates	
  when	
  the	
  

relative	
  value	
  action	
  becomes	
  sufficiently	
  biased	
  towards	
  one	
  of	
  the	
  choices	
  [48,51-­‐

55].	
  Although	
  this	
  model	
  has	
  been	
  quite	
  successful	
  in	
  providing	
  qualitative	
  and	
  

quantitative	
  explanations	
  in	
  many	
  domains,	
  it	
  also	
  has	
  limitations	
  that	
  have	
  begun	
  

to	
  be	
  addressed.	
  First,	
  the	
  model	
  does	
  not	
  generalize	
  easily	
  to	
  the	
  case	
  of	
  more	
  than	
  

two	
  alternatives.	
  Bogacz	
  and	
  Gurney	
  have	
  proposed	
  an	
  extension	
  in	
  which	
  decision	
  

thresholds	
  depend	
  on	
  the	
  amount	
  of	
  conflict	
  between	
  the	
  alternatives	
  (see	
  also	
  

[56,57]).	
  Second,	
  recent	
  work	
  by	
  Cisek	
  [58]	
  and	
  Ditterich	
  [59]	
  has	
  shown	
  models	
  

with	
  urgency	
  signals	
  that	
  increase	
  with	
  reaction	
  time	
  can	
  account	
  for	
  a	
  wider	
  range	
  

of	
  psychometric	
  data	
  than	
  equivalent	
  parameterizations	
  of	
  the	
  diffusion	
  model	
  

(Figure	
  2A-­‐C).	
  Finally,	
  whereas	
  diffusion	
  models	
  are	
  silent	
  about	
  how	
  the	
  

comparison	
  process	
  eventually	
  triggers	
  a	
  motor	
  response,	
  Cisek	
  [60]	
  has	
  extended	
  

the	
  logic	
  of	
  these	
  models	
  to	
  show	
  how	
  this	
  could	
  be	
  accomplished,	
  thus	
  providing	
  a	
  

joint	
  model	
  of	
  action	
  selection	
  and	
  motor	
  planning.	
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The	
  second	
  class	
  of	
  models	
  has	
  addressed	
  the	
  same	
  problem	
  using	
  neuronal	
  

models	
  of	
  the	
  comparison	
  process	
  [50,61,62].	
  Although	
  these	
  models	
  are	
  

significantly	
  more	
  complicated,	
  they	
  have	
  been	
  able	
  to	
  provide	
  a	
  better	
  match	
  to	
  the	
  

behavioral	
  and	
  the	
  neurometric	
  data.	
  	
  

	
   A	
  new	
  and	
  highly	
  promising	
  alternative	
  approach	
  to	
  these	
  models	
  are	
  the	
  

Bayesian	
  decision-­‐making	
  models	
  based	
  on	
  probabilistic	
  population	
  codes	
  of	
  Pouget	
  

and	
  collaborators	
  (Figure	
  2D-­‐H).	
  In	
  a	
  series	
  of	
  recent	
  papers	
  [63,64]	
  they	
  have	
  

shown	
  that	
  as	
  long	
  as	
  neurons	
  follow	
  approximately	
  a	
  Poisson-­‐like	
  distribution	
  of	
  

spike	
  counts,	
  it	
  is	
  possible	
  to	
  make	
  fully	
  optimal	
  Bayesian	
  perceptual	
  decisions	
  using	
  

simple	
  linear	
  integration	
  of	
  neural	
  activity,	
  even	
  in	
  the	
  presence	
  of	
  a	
  large	
  number	
  of	
  

options,	
  or	
  with	
  noise	
  that	
  changes	
  within	
  and	
  across	
  trials.	
  Extending	
  and	
  testing	
  

these	
  ideas	
  in	
  the	
  realm	
  of	
  value	
  based	
  decision-­‐making	
  promises	
  to	
  be	
  a	
  profitable	
  

line	
  of	
  inquiry.	
  

The	
  best	
  available	
  evidence	
  regarding	
  potential	
  substrates	
  of	
  the	
  comparison	
  

process	
  comes	
  from	
  the	
  study	
  by	
  Kim	
  et	
  al.	
  [45]	
  described	
  above.	
  They	
  found	
  

neurons	
  in	
  DLPFC	
  that	
  encoded	
  the	
  value	
  of	
  one	
  of	
  the	
  actions	
  dynamically,	
  by	
  

ramping	
  up	
  their	
  activity	
  until	
  a	
  choice	
  was	
  made	
  if	
  the	
  action	
  was	
  associated	
  with	
  

the	
  best	
  prize,	
  and	
  ramping	
  down	
  activity	
  otherwise.	
  The	
  dynamics	
  of	
  such	
  neurons	
  

are	
  consistent	
  with	
  the	
  models	
  discussed	
  above.	
  On	
  the	
  basis	
  of	
  human	
  fMRI	
  data	
  

Wunderlich	
  et	
  al.	
  [46]	
  have	
  recently	
  argued	
  on	
  that	
  parts	
  of	
  the	
  ACC	
  might	
  play	
  a	
  

critical	
  role	
  in	
  the	
  comparison	
  process.	
  Another	
  hypothesis	
  that	
  has	
  received	
  a	
  

significant	
  amount	
  of	
  attention	
  is	
  that	
  the	
  choice	
  process	
  might	
  not	
  be	
  implemented	
  

in	
  a	
  single	
  area,	
  but	
  instead	
  might	
  reside	
  in	
  the	
  dynamics	
  of	
  cortico-­‐basal-­‐ganglia-­‐

thalamic	
  loops	
  [55,65-­‐67].	
  

Other	
  clues	
  about	
  the	
  neural	
  basis	
  of	
  the	
  comparator	
  process	
  come	
  from	
  the	
  

existence	
  of	
  wide	
  spread	
  chosen	
  value	
  signals	
  reflecting	
  the	
  output	
  of	
  the	
  

comparison	
  process.	
  Padoa-­‐Schioppa	
  and	
  Assad	
  [14]	
  found	
  OFC	
  neurons	
  encoding	
  

the	
  value	
  of	
  the	
  chosen	
  stimulus	
  (often	
  called	
  ‘chosen	
  value’	
  neurons).	
  Kepecs	
  et	
  al.	
  

[68]	
  found	
  rat	
  OFC	
  neurons	
  that	
  encode	
  either	
  the	
  ‘chosen	
  value’	
  or	
  a	
  measure	
  of	
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‘uncertainty’	
  on	
  having	
  selected	
  the	
  best	
  stimulus.	
  Several	
  human	
  fMRI	
  choice	
  

studies	
  have	
  found	
  that	
  BOLD	
  activity	
  in	
  the	
  OFC	
  correlates	
  with	
  chosen	
  values	
  

[46,69,70].	
  Neurons	
  encoding	
  chosen	
  values	
  have	
  also	
  been	
  found	
  in	
  the	
  ACC	
  [32,71]	
  

and	
  the	
  caudate	
  [43].	
  At	
  a	
  minimum,	
  these	
  findings	
  suggest	
  that	
  the	
  output	
  of	
  the	
  

comparison	
  process	
  is	
  passed	
  to	
  multiple	
  areas,	
  probably	
  for	
  the	
  purpose	
  of	
  

learning	
  the	
  value	
  of	
  actions	
  via	
  reinforcement	
  learning.	
  

Importantly,	
  none	
  of	
  the	
  existing	
  models	
  has	
  been	
  systematically	
  compared	
  

against	
  neural	
  activity	
  during	
  goal	
  directed	
  choices.	
  This	
  exercise	
  is	
  one	
  of	
  the	
  most	
  

pressing	
  open	
  questions	
  for	
  the	
  field	
  since	
  very	
  little	
  is	
  known	
  about	
  the	
  neural	
  

substrates	
  of	
  action	
  value	
  comparisons.	
  	
  

	
  

Conclusions	
  

Throughout	
  the	
  review	
  we	
  have	
  emphasized	
  a	
  multitude	
  of	
  important	
  and	
  

pressing	
  open	
  questions.	
  However,	
  it	
  is	
  important	
  not	
  to	
  lose	
  sight	
  of	
  the	
  progress	
  

that	
  has	
  been	
  made.	
  We	
  now	
  know	
  that	
  OFC	
  neurons	
  encode	
  stimulus	
  values	
  in	
  a	
  

wide	
  variety	
  of	
  contexts	
  and	
  that	
  values	
  are	
  sensitive	
  to	
  internal	
  physiological	
  and	
  

cognitive	
  states.	
  We	
  know	
  that	
  stimulus	
  value	
  signals	
  respond	
  to	
  variables	
  such	
  as	
  

delay	
  and	
  risk	
  in	
  ways	
  that	
  are	
  consistent	
  with	
  theories	
  from	
  behavioral	
  economics.	
  

We	
  know	
  that	
  during	
  complex	
  decisions	
  other	
  cortical	
  areas	
  (such	
  as	
  DLPFC,	
  insula,	
  

and	
  temporal	
  cortex)	
  are	
  able	
  to	
  influence	
  decisions	
  by	
  modulating	
  the	
  computation	
  

of	
  stimulus	
  values	
  in	
  OFC.	
  We	
  know	
  that	
  there	
  is	
  a	
  dissociation	
  between	
  ACC,	
  which	
  

specializes	
  in	
  action	
  cost	
  and	
  value	
  coding,	
  and	
  OFC,	
  which	
  specializes	
  in	
  stimulus	
  

value	
  coding.	
  We	
  have	
  begun	
  to	
  characterize	
  some	
  of	
  the	
  key	
  computational	
  

properties	
  of	
  the	
  processes	
  though	
  which	
  stimulus	
  values	
  are	
  compared	
  to	
  generate	
  

choices.	
  Furthermore,	
  the	
  growing	
  combination	
  of	
  computational	
  models	
  with	
  

sophisticated	
  neuroscientific	
  methods	
  makes	
  it	
  likely	
  that	
  many	
  of	
  the	
  open	
  

questions	
  listed	
  here	
  will	
  be	
  resolved	
  in	
  the	
  near	
  future	
  [4].	
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  Figure	
  legends	
  

	
  

Figure	
  1.	
  Stimulus	
  value	
  is	
  reflected	
  in	
  VMPFC	
  activity.	
  A)	
  The	
  overlay	
  map	
  shows	
  

the	
  peak	
  activations	
  in	
  mOFC/ACC	
  for	
  three	
  fMRI	
  studies	
  of	
  goal-­‐directed	
  decision-­‐

making.	
  The	
  peak	
  from	
  a	
  study	
  by	
  Chib	
  et	
  al.	
  [72]	
  investigating	
  decisions	
  using	
  

consumer	
  goods,	
  food,	
  and	
  monetary	
  rewards	
  is	
  shown	
  in	
  red.	
  Peak	
  activity	
  for	
  

choices	
  over	
  gambles	
  representing	
  both	
  monetary	
  gain	
  and	
  loss	
  from	
  Tom	
  et	
  al.	
  

[24]is	
  shown	
  in	
  green.	
  Yellow	
  voxels	
  represent	
  the	
  peak	
  for	
  decisions	
  about	
  

charitable	
  donations	
  from	
  Hare	
  et	
  al.	
  [34].	
  Examples	
  of	
  the	
  stimuli	
  associated	
  with	
  

each	
  peak	
  are	
  shown	
  on	
  the	
  right	
  inside	
  a	
  box	
  of	
  the	
  corresponding	
  color.	
  B)	
  The	
  

MRI	
  image	
  shows	
  the	
  placement	
  of	
  electrodes	
  in	
  area	
  13	
  from	
  Padoa-­‐Schioppa	
  et	
  al.	
  

[14]	
  .	
  	
  A	
  diagram	
  of	
  the	
  task	
  structure	
  is	
  shown	
  in	
  the	
  upper	
  middle	
  and	
  below	
  that	
  a	
  

choice	
  curve	
  showing	
  the	
  relative	
  preference	
  for	
  juice	
  A	
  compared	
  to	
  juice	
  B.	
  The	
  

graph	
  on	
  the	
  far	
  right	
  shows	
  the	
  firing	
  rate	
  for	
  a	
  stimulus	
  selective	
  neuron.	
  Firing	
  

increases	
  with	
  the	
  value	
  of	
  juice	
  A	
  regardless	
  of	
  the	
  action	
  required	
  to	
  select	
  it.	
  

Images	
  in	
  part	
  B	
  were	
  adapted	
  from	
  [14].	
  C)	
  The	
  renderings	
  on	
  the	
  left	
  illustrate	
  a	
  

potential	
  pathway	
  through	
  which	
  DLPFC	
  activity	
  might	
  modulate	
  value	
  

computations	
  in	
  mOFC	
  as	
  reported	
  by	
  Hare	
  et	
  al.	
  [33].	
  	
  By	
  inhibiting	
  activity	
  in	
  a	
  

region	
  of	
  BA	
  46,	
  DLPFC	
  might	
  bring	
  down	
  the	
  value	
  of	
  unhealthy	
  food	
  items	
  in	
  the	
  

dietary	
  self-­‐control	
  task.	
  Dieters	
  who	
  successfully	
  exercised	
  self-­‐control	
  in	
  this	
  task	
  

had	
  greater	
  activity	
  in	
  left	
  DLPFC	
  compared	
  to	
  those	
  subjects	
  who	
  did	
  not	
  use	
  self-­‐

control.	
  However,	
  the	
  top	
  graph	
  shows	
  that	
  within	
  each	
  group	
  there	
  was	
  greater	
  

DLPFC	
  activity	
  when	
  self-­‐control	
  was	
  successful	
  than	
  on	
  trials	
  where	
  self-­‐control	
  

failed.	
  The	
  bottom	
  graph	
  shows	
  that	
  successful	
  self-­‐controlers	
  incorporated	
  both	
  

taste	
  and	
  health	
  attributes	
  into	
  value	
  signals	
  computed	
  in	
  mOFC,	
  whereas	
  non-­‐self-­‐

controlers	
  computed	
  values	
  based	
  on	
  tastes	
  alone.	
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Figure	
  2.	
  A)	
  Illustration	
  of	
  the	
  main	
  components	
  of	
  the	
  diffusion	
  model	
  of	
  perceptual	
  

decision-­‐making.	
  Evidence	
  E	
  in	
  favor	
  of	
  a	
  decision	
  can	
  be	
  strong	
  (black)	
  or	
  weak	
  

(gray)	
  and	
  is	
  integrated	
  over	
  time.	
  A	
  decision	
  is	
  made	
  when	
  a	
  common	
  threshold	
  is	
  

reached.	
  B)	
  Illustration	
  of	
  the	
  main	
  components	
  of	
  the	
  urgency-­‐gating	
  model	
  of	
  [60].	
  

Now	
  evidence	
  is	
  not	
  integrated	
  over	
  time.	
  Instead	
  it	
  is	
  multiplied	
  by	
  an	
  urgency	
  

signal	
  u	
  and	
  a	
  decision	
  is	
  made	
  when	
  x.u	
  reaches	
  a	
  common	
  decision	
  threshold.	
  C)	
  

Data	
  generated	
  by	
  the	
  two	
  models	
  (top	
  and	
  middle)	
  and	
  actual	
  behavior	
  for	
  a	
  typical	
  

subject	
  (bottom)	
  in	
  trials	
  in	
  which	
  the	
  first	
  few	
  pieces	
  of	
  evidence	
  were	
  biased	
  for	
  or	
  

against	
  the	
  decision.	
  As	
  can	
  be	
  seen	
  in	
  the	
  bottom	
  panel,	
  the	
  urgency	
  model	
  

correctly	
  predicts	
  the	
  absence	
  of	
  differences	
  between	
  the	
  two	
  models,	
  but	
  the	
  

diffusion	
  model	
  does	
  not.	
  D)	
  Continuous	
  version	
  of	
  the	
  Newsome-­‐Shadlen	
  

perceptual	
  discrimination	
  task	
  in	
  which	
  a	
  subset	
  of	
  otherwise	
  randomly	
  moving	
  

dots	
  move	
  coherently	
  in	
  some	
  direction.	
  The	
  animal	
  indicates	
  its	
  guess	
  about	
  the	
  

direction	
  of	
  coherent	
  movement	
  at	
  any	
  time	
  through	
  an	
  eye-­‐movement.	
  Correct	
  

responses	
  are	
  rewarded.	
  E)	
  Basic	
  architecture	
  of	
  the	
  Bayesian	
  population	
  model	
  of	
  

Beck	
  et	
  al.	
  [63].	
  Each	
  graph	
  summarizes	
  neural	
  activity	
  in	
  an	
  area	
  at	
  a	
  particular	
  

instant	
  of	
  the	
  decision	
  task.	
  SCb:	
  bursting	
  neurons	
  in	
  the	
  superior	
  colliculus.	
  The	
  x-­‐

axis	
  denotes	
  the	
  preferred	
  direction	
  of	
  movement	
  for	
  a	
  given	
  neuron.	
  The	
  y-­‐axis	
  

denotes	
  the	
  local	
  firing	
  rate	
  for	
  that	
  neuron.	
  The	
  model	
  consists	
  of	
  a	
  network	
  with	
  

three	
  interconnected	
  layers	
  of	
  neurons	
  with	
  Gaussian	
  tuning	
  curves.	
  MT	
  neurons	
  

encode	
  the	
  instantaneous	
  direction	
  of	
  motion.	
  LIP	
  and	
  SCb	
  neurons	
  encode	
  potential	
  

directions	
  of	
  motion.	
  The	
  population	
  code	
  in	
  SCb	
  represents	
  the	
  most	
  likely	
  

direction	
  of	
  motion	
  at	
  any	
  instant.	
  F)	
  Activity	
  in	
  LIP	
  can	
  be	
  passed	
  through	
  a	
  

Bayesian	
  decoder	
  to	
  compute	
  posterior	
  probabilities	
  P(s|r)	
  over	
  the	
  coherent	
  

direction	
  of	
  motion	
  given	
  the	
  current	
  levels	
  of	
  activity	
  r.	
  Note	
  that	
  the	
  posteriors	
  

become	
  sharper	
  as	
  time	
  progresses.	
  G)	
  The	
  activity	
  in	
  LIP	
  can	
  also	
  be	
  used	
  to	
  predict	
  

firing	
  rates	
  as	
  a	
  function	
  of	
  coherence	
  and	
  time	
  (left),	
  which	
  match	
  well	
  the	
  

predictions	
  from	
  Roitman	
  and	
  Shadlen	
  [73]	
  (right).	
  H)	
  The	
  model	
  is	
  also	
  able	
  to	
  

account	
  for	
  the	
  choice	
  and	
  reaction	
  time	
  data	
  in	
  the	
  multi-­‐option	
  choice	
  experiment	
  

of	
  Churchland	
  et	
  al.	
  [57].	
  Red:	
  four-­‐choice	
  experiment.	
  Blue:	
  two-­‐choice	
  experiment.	
  

A-­‐C	
  are	
  from	
  [60].	
  D-­‐H	
  are	
  from	
  [63].	
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