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INTRODUCTION

Neuroeconomics combines methods and theories
from neuroscience, psychology, economics, and com-
puter science to study three questions: (i) what are the
variables computed by the brain to make different types
of decisions; (ii) how does the underlying neurobiology
implement and constrain these computations; (iii) what
are the implications of this knowledge for understand-
ing behavior and well-being? Neuroeconomics seeks to
produce detailed computational and neurobiological
accounts of the choice process that can serve as a com-
mon foundation for understanding human behavior
across the natural and social sciences (Clithero et al.,
2008; Fehr and Rangel, 2011; Glimcher, 2011; Rangel
et al., 2008; Wilson, 1998).

A basic question is how does the brain make simple
choices, such as choosing between an apple and an
orange. Much effort has been devoted to studying
whether the brain makes these choices by computing
and comparing value signals, to characterizing the

computational and neurobiological properties of the
various processes involved, and to understanding how
they influence choices. This research agenda is based
on the belief that simple choice provides a good test
bed for the systematic study of neuroeconomic ques-
tions, and that some of its essential computational and
neurobiological features are likely to be preserved in
more complex decisions. As is illustrated in many of
the other chapters in this volume, so far this has
proven a reasonably accurate assumption.

Simple choices are more complex and interesting
than they might seem. They involve the parallel compu-
tation of several distinct value signals, as well as the
dynamic integration and comparison of those value sig-
nals in order to elicit the motor response, or movement,
necessary to execute the decision (e.g., reach left and
grab the orange, or reach right and grab the apple).

This chapter provides an introduction to what is
known about how the brain computes what are often
called stimulus values. There is now some evidence
that during simple choice, the brain computes and
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represents these stimulus values, a measure of the
expected benefit of consuming the different options,
independently of the action costs required to get them.
In contrast, action costs measure the effort or unpleas-
antness associated with executing an action, indepen-
dently of the expected benefits that those actions might
generate. For example, if a hungry rat needs to execute
ten painful nose pokes to get access to a food port, the
action costs are the effort associated with the nose
pokes, the stimulus value is the hedonic response from
consuming the food, and the net value of taking the
action is given by the stimulus values minus the action
costs. Although stimulus values are only one of several
kinds of value signals hypothesized to be computed at
the time of decision, they have received much attention
because there is growing evidence that in many circum-
stances they are the key drivers of choice. This occurs,
for example, when the action costs associated with
acquiring the options are negligible relative to the bene-
fits from consuming them, or when the action costs of
the options under consideration are identical.

The chapter has several goals. First, it provides an
introduction to the study of stimulus valuation for
those new to neuroeconomics. This includes a thorough
review of the methodological issues involved in identi-
fying stimulus value signals in the brain, and some
insights into the relative merits of alternative experi-
mental approaches. Second, the chapter provides a
discussion of the research frontier in this area, includ-
ing the body of findings for which there is a degree
of consensus, as well as some key areas of disagree-
ment. Third, the chapter emphasizes the importance of
computational models in neuroeconomics. To make this
point explicitly, it shows how a fully specified compu-
tational model of simple choice is critical for making
sense of seemingly contradictory findings in the litera-
ture. It should be noted that many of the issues engaged
here are discussed in further detail in Chapter 22.

It is important to emphasize several limitations in
the scope of the chapter. It discusses computational
modeling, human functional magnetic resonance imag-
ing (fMRI), and non-human primate neurophysiology
studies, but it does not cover related rodent experi-
ments. There are, however, several excellent reviews
on this topic (McDannald et al., 2012; Schoenbaum
et al., 2009). The chapter also does not discuss feedback
and reward learning issues, instead focusing on what
happens at the time of decision, given all preceding
learning. See Chapters 15�18, for value learning. The
chapter only considers choices that are made using the
goal-directed control system, as opposed to the com-
peting habitual and Pavlovian controllers. These other
types of choices are taken up explicitly in Chapter 21.
As a result, the chapter only discusses choice situations
that are not over-trained, in the sense that they are

relatively novel to the subjects. Finally, it should be
noted that given the size of the relevant literature, and
the pedagogical aspirations of the chapter, it focuses
on depth at the expense of breadth.

THEORY: A COMPUTATIONAL MODEL
OF SIMPLE CHOICE

Consider the choice task depicted in Figure 8.1A,
which illustrates a widely used class of paradigms. On
every trial the subject is shown a consumption stimulus
(for example a tasty food), as well as the amount of
effort required to get it. In order to get the food the sub-
ject might need to squeeze a handgrip (a plastic cylin-
der containing an air tube that can be squeezed,
compressing the air tube in a way that allows accurate
measurement of physical effort exerted) with a mini-
mum amount of force for a minimum length of time.
The subject needs to decide whether he wants to get
the food in exchange for that effort, or get nothing but
do no work. The decision is indicated by a left-hand
(5Yes) or right-hand (5No) button press. If the subject
chooses “Yes,” then he needs to carry out the effort in
order to get the consumption item. Subjects are allowed
to indicate their choice whenever they are ready.

A large body of behavioral data has shown that these
types of tasks lead to psychometric choice curves that
are consistent with the logistic choice model (Luce, 1959;
McFadden, 2001). As illustrated in Figure 8.1B, the prob-
ability of saying “Yes” increases with the subjective
value of the consumption good, and decreases with the
action costs.

Figure 8.1C describes a simple computational model
of the task. It describes the variables that are computed
at the time of choice, and how they interact with each
other to affect behavior, without specifying the details
of how they are implemented in the brain. The model
has two key components: value signals and a compara-
tor process.

Consider the valuation process first. The model
assumes that three distinct value signals are computed
from the time the choice screen appears to the time a
decision is made. First, there are stimulus value (SV)
signals that measure the expected subjective value of
consuming the stimulus, independently of the action
required to acquire it. If delivery of the stimulus is
probabilistic or delayed, the SV signal takes this into
account, by weighting potential outcomes according to
their probability, and temporally discounting delayed
rewards. Thus, an unlikely reward delivered far in the
future is assigned a lower SV than an otherwise more
likely and proximate one. Similarly, if the action gives
the subject the right to buy the good at a certain price,
the price is also part of the SV. Risk, delay, and price
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are inherent properties of the stimulus, and thus are
integral to the SV computation. Second, there are action
cost (AC) signals that reflect the subjective value of taking
the action required to get the item, independently of the
benefits generated by the stimulus. These values are
referred to as costs, since they often entail effort or pain.
Third, there are action value (AV) signals that, by integrat-
ing the SV and AC, provide an integrated representation
of the value of taking the action, once the costs and bene-
fits are taken into account (Rangel and Hare, 2010).

Now think about the comparator process. In a world
without noise (a world with no stochasticity in percep-
tion or in neural computation), the brain would be able
to precisely measure these three variables, and to reli-
ably make the value maximizing decision simply by
implementing the following rule: choose left (5Yes) if
the reading of the AV signal is positive, and right
(5No) otherwise. However, as the literature in percep-
tual decision making has shown (Gold and Shadlen,

2007; Heekeren et al., 2008), noise is pervasive in these
types of computations, in the sense that SVs, ACs and
AVs are measured with noise, which makes the simple
value maximization rule described before untenable.
Instead, a growing body of literature suggests that the
brain has dedicated processes to deal with the problems
introduced by this noise. In particular, suppose that the
instantaneous AV signals are computed with identical
and independently distributed Gaussian noise. Then, a
general class of processes known as Drift-Diffusion
Models (DDM) implement the optimal statistical solu-
tion to this problem, which entails a sequential likeli-
hood ratio test. This important class of models are
discussed in more detail in Chapters 3 and 19.

Although multiple flavors of these models have been
proposed, the following simple and popular version
(Ratcliff, 1978; Ratcliff and McKoon, 2008) provides a
highly accurate quantitative description of the choice
and reaction time curves generated by simple choice
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FIGURE 8.1 (A) A common choice task for subjects in experiments is a simple Yes/No decision. Here, the subject can exert an amount of
effort (indicated by the green line on the right) and receive an orange (indicated on the left). Responses are provided by button press
(left5YES, right5NO). (B) Psychometric choice curves. If choice data are collected and a choice function is estimated assuming a logistic fit,
subjects will generally have a probablility of saying “YES” that is increasing in the stimulus value of the orange (orange curve on left), and
decreasing in the action cost of obtaining the orange (green curve on right). (C) A simple choice model that integrates stimulus values and
action costs to compute stimulus values. Consider three different goods, A, B, and C, with different stimulus values and action costs. Once
they are combined, option A has the greatest action value of the three (given its highest stimulus value and lowest action cost). The model
also assumes a noisy-drift process (right), whereby a subject’s decision-making process accumulates information until a sufficient threshold
(grey lines) is crossed. In this case, the subject chose “YES”.

127THEORY: A COMPUTATIONAL MODEL OF SIMPLE CHOICE

NEUROECONOMICS



tasks (Basten et al., 2010; Gluth et al., 2012; Krajbich and
Rangel, 2011; Krajbich et al., 2010, 2012; Milosavljevic
et al., 2010). A simple DDM assumes that a binary
choice is made by dynamically integrating the noisy
AV signals (Figure 8.1C). This leads to an integrated rel-
ative decision value signal that measures the estimated
relative value of the left (5Yes) versus the right (5No)
choices. The signal starts at zero and at every instant t
evolves according to the formula:

Rt11 5Rt 1 θ ðAVðYesÞ �AVðNoÞÞ1εt; ð8:1Þ

where Rt denotes the level of the signal at instant t (mea-
sured from the start of the choice process), θ is a constant
that affects the speed of the process, and εt denotes an
independent and identically distributed error term. The
process continues until a pre-specified barrier is crossed:
the left (5Yes) action is chosen if the upper barrier at
1B is crossed first, and the right (5No) action is chosen
if the lower barrier at 2B is crossed first. If the choice of
“No” leads to no consumption, we can set AV(No)5 0
(since both SV and AC are equal to 0).

This model of the comparator has several important
features. First, since the integrated relative value signal
evolves stochastically, choices and reaction times are
inherently noisy, as they are in the data. Second, the
model predicts a logistic psychometric choice curve in
which the probability of left (5Yes) increases with AV
(Yes), and reaction times are decreasing on the same
variable. Third, individuals can make mistakes, in the
sense of not choosing the best option, but the probability
of doing so decreases with the barrier size B, the slope
of integration θ, and the strength of the underlying AV
signal. In particular, the relative decision value Rt can be
thought of as the accumulated evidence in favor of the
hypothesis that the left action is better (when Rt. 0), or
the accumulated evidence in favor of the alternative
hypothesis (when Rt, 0). The more extreme these values
become, the less likely it is that the evidence is incorrect.
Finally, the probability of making a mistake can be con-
trolled by changing the amount of noise in the integra-
tion process.

The model of simple choice outlined in this chapter
also states that the three signals are encoded simulta-
neously and that the SV and AC only interact when
they come together to compute the net action values.
After the various value signals are computed, they are
integrated by the comparator system until a choice is
made. Thus, the duration of the value computations is
controlled by the comparator.

It is important to emphasize that there are alterna-
tive model specifications of simple choice that,
a priori, seem equally plausible. For example, consider
a version of the model in which AVs are not computed
separately, and instead the SV and ACs are fed

additively into the comparator. This alternative model
generates identical behavioral predictions provided
that the weights of the different signals are appropri-
ately chosen. A strength of the neuroeconomic
approach is that it allows for empirical tests of differ-
ent computational models using neural data: under
the first hypothesis we should find units engaged in
AV coding and feeding this information to the com-
parator, whereas in the second version we should not
find AV signals, and instead the SV and AC regions
should interact directly with the comparator network.

The model also highlights an important distinction
between pure SV coding activity and areas that pro-
vide representations of multiple kinds of value signals
at the same time, often called “multiplexed” signals
(Hayden and Platt, 2010; Kennerley et al., 2009). In
particular, a “pure SV” unit or region is responsive to
the SVs but not to the ACs. In contrast, areas involved
in the representation of AVs, or in the dynamic value
signals of the comparator, do not entail pure SV coding
since they also represent other computations, such as
the integration of benefits and costs.

Because of the central role of SVs in neuroeconomics,
this chapter focuses on the computation of SVs alone, and
not on the computation of ACs, AVs, or how they are
integrated and compared. For reviews of AC and AV cod-
ing see Chapter 21 of this volume or (Rangel and Hare,
2010; Rushworth et al., 2011; Wallis and Kennerley, 2010).
For behavioral and neural evidence related to the drift
diffusion model, or DDM, see Chapter 19 and Basten et al.
(2010), Hare et al. (2011b), and Krajbich et al. (2010).

METHODOLOGY: HOW TO IDENTIFY
STIMULUS VALUE SIGNALS?

In order to take the model of simple choice to the
neural data using the tools described in Chapter 4, two
additional things are necessary: a methodology to
obtain subject specific measures of the SVs computed
in every trial and a theory of how the computations
described above map to neural activity.

Several procedures are widely used in the field to
obtain subject- and stimulus-specific measures of SV.
One popular option is to obtain an independent mea-
sure of the SV taken either before or after the choice
task. This is easily done using liking ratings (“how
much would you like to get this good at the end of the
experiment?”), or Becker-DeGroot-Marschack (BDM)
auctions that provide a monetary and incentive-
compatible measure (“how much would you be willing
to pay to get this good at the end of the experiment?”)
of the value of each item (Becker et al., 1964). Both meth-
ods can be used to measure the value of virtually any
stimulus, provided that the subjects’ valuations remain
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sufficiently stable throughout the experiment. A disad-
vantage is that it often requires additional data collec-
tion dedicated to obtaining these measurements.
Another popular option is to estimate SV from the
choice data collected during the experiment itself. This
can be done under the maintained hypothesis that indi-
vidual choice probabilities are generated by something
like a logistic choice model over the SVs and ACs
(Luce, 1959; McFadden, 2005). If the number of stimuli
is small, or if SVs can be described using a simple
parametric function of a small number of parameters
(e.g., prospect theory; Kahneman and Tversky, 1979;
Tversky and Kahneman, 1992), this suffices to estimate
the SV of each choice object. The advantage of this
method is that it does not require additional data collec-
tion. The disadvantage is that sometimes the para-
meters cannot be estimated with the desired level of
precision. For this reason, many groups often use a
hybrid of the two procedures (Hare et al., 2009) in
which subjects are asked to indicate their choices using
a five point scale: Strong No, No, Indifferent, Yes,
Strong Yes. This allows subjects to simultaneously indi-
cate their choice and their valuation for the stimulus, as
both Strong No and No indicate a negative choice, but
with Strong No indicating a lower SV.

The neuroeconomics literature has assumed that
SVs and ACs are encoded either in single neurons, or
in populations of neurons within a brain region. Under
this assumption, the firing rate of such units in every
trial, or the activity level of such regions, should be
proportional to the subject- and stimulus-specific SV
measures obtained using the procedures described
above. This prediction can be tested using single unit
neurophysiology, blood-oxygenation-level-dependent
(BOLD) signal from fMRI, electroencephalography
(EEG), or magnetoencephalography (MEG) to look for
neurons or brain regions in which the measures of
neural activity correlate with the inferred SVs.

A very important point is that although this is the
empirical test emphasized in most studies, it is not a
sufficient step to conclude that a brain region encodes
SVs � a point stressed with regard to any neural vari-
able in Chapter 4. In particular, the following additional
tests are also needed to draw such a conclusion.

First, there are pervasive potential confounds that
need be ruled out. In most paradigms, SVs are highly
correlated with a number of other value-related signals
(Figure 8.2A). The SV of a trial is often highly correlated
with a prediction error (PE), which measure unex-
pected changes in present and future rewards
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(Hare et al., 2008; McClure et al., 2003; O’Doherty et al.,
2003; Schultz et al., 1997). This confound arises from the
fact that there will be a PE whenever choice options
are revealed. To see why, note that finding out that the
choice options in a given trial are better (worse) than
average is good news because, once the optimal choice
is made, it will lead to better (worse) than average
consumption. In fact, in some experimental designs PEs
are perfectly correlated with the SVs, even if they are
distinct from them under many other conditions. In
other paradigms, exposure to the choice stimuli gener-
ate direct emotional or hedonic responses (for example,
pictures of attractive faces) that are also correlated with,
but distinct from the SVs. These confounds need to be
identified and systematically ruled out. One approach
to addressing this confound is to add forced-choice
trials in which the subject is exposed to the same stimu-
li, but does not make a choice. This works because SV
signals should be present during free but not forced
choices, whereas direct affective responses to the stimu-
li (that are unrelated to choice) should be present in
both types of trials.

Second, many paradigms confound arousal, motor
preparation, and pure attentional processing with SVs
(Maunsell, 2004). This potential confound is especially
acute in paradigms that use only appetitive or aversive
stimuli, but not both. As shown in Figure 8.2B, a good
way to eliminate this confound is to combine appetitive
and aversive stimuli. Such a paradigm helps because
SV signals are monotonically increasing over the entire
value range, whereas arousal, motor preparation and
attentional signals are U-shaped. Another common
term for this second type of signal is saliency, which
provides a measure of the importance of the stimulus.
A powerful and provocative illustration of this problem
was provided by a recent study that showed that
electromyography measures of activity in neck and jaw
muscles, which presumably reflect either motor prepa-
ration or arousal, are correlated with SV during a
simple choice task (Roesch and Olson, 2003). Thus, in
the absence of the controls described here, one would
erroneously conclude that these muscles encode SV.
This illustrates the critical importance of systematically
ruling out these types of confounds.

Third, another source of potential confounds is due
to the presence of neurons encoding “multiplexed”
value signals (Hayden and Platt, 2010). Neurons encod-
ing pure SV signals should not be responsive to
information about ACs, and should be encoded in stim-
ulus space, thus omitting information about the actions
required to implement them. This test is important to
separate activity related to multiplexed signals (such as
a neuron that encodes AV5 SV2AC, and thus corre-
lates with SVs) from activity related to pure SV signals
(which correlates with SV but not with AC).

Fourth, the model also generates predictions about
how SV signals are used in concert with other computa-
tions to make a choice. In particular, they predict that
SVs should be passed to areas involved in the computa-
tion of AVs, the implementation of the comparator pro-
cess, or both. This implies that areas recruited in SV
coding should also exhibit increased functional connec-
tivity with areas involved in computing AVs and in the
comparison process at the time of choice. These connec-
tivity tests are important because, under the assump-
tions of the model, they provide additional evidence in
support of the hypothesis that an area encodes SVs that
are used to guide choices.

Fifth, SV identification requires correctly under-
standing the duration of the SV computations
(Figure 8.2C). The model predicts that SVs are
encoded until a choice is made, and that choice dura-
tion is inversely proportional to SV. Many fMRI stud-
ies ignore this point and instead model the BOLD
responses under the assumption that the valuation
process has equal duration for all stimuli. As shown
in Figure 8.2C, this biases down the estimates of
strength of the neural signals, which can result in a
mistaken failure to identify neural responses associ-
ated with the computation of SVs. Thus, an absence
of a finding � if this issue is not resolved � might
correspond to incorrectly concluding a neuron or
region does not encode SV.

Sixth, the model of simple choice outlined here
assumes that the SV signals causally influence the
choices that are made, and none of the tests described
above address this component of the theory. The issue
of testing for causality of SVs is thus an important yet
difficult one. The chapter returns to this issue in a later
section.

This section has established that safely concluding
that a neuron or brain region encodes a pure SV signal
is a hard problem, requiring much thoughtful experi-
mental design and numerous controls. Ideally, every
single study would be able to address all of them.
Historically, this has not been the case, partly because
of the inherent difficulties, and partly because
early research in neuroeconomics has sometimes
showed weaknesses in these methodological issues.
Fortunately, however, the body of data available today,
taken as a whole, provides all of the necessary checks
and, as described in the next section, has led to a robust
set of findings regarding the computation of SVs.

EVIDENCE: STIMULUS VALUE SIGNALS
IN BASIC VALUATION TASKS

This section describes key studies and findings
regarding the neural basis of SV signals. It focuses
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on human fMRI work because, as described in the
next section, most existing monkey neurophysiology
experiments have used tasks that introduce additional
theoretical and methodological complications that make
it difficult to draw precise conclusions about the value
computations taking place.

The studies described below are based on three
different variations of the task depicted in
Figure 8.1A. Some studies simply ask subjects to pro-
vide a value for each stimuli, either using liking rat-
ings (Grabenhorst et al., 2010; O’Doherty et al., 2003;
Plassmann et al., 2008), or incentive compatible bids
(Clithero et al., 2009; De Martino et al., 2009;
Plassmann et al., 2007). In either case, the logic
behind the tasks is to induce subjects to activate the
SV circuitry without necessarily activating the rest of
the choice circuitry. (Although there is an unresolved
issue of whether these tasks fully eliminate the com-
putations associated with the comparator process
since such tasks still require the brain to select which
button to press to report a bid). Other studies have
used a version of the task in which every trial sub-
jects choose between the stimulus shown and “get-
ting nothing,” and in which the actions required to
implement the choices are button presses with negli-
gible and identical costs. In this case, ACs are
approximately zero, AVs are approximately equal to
SVs, and SVs are the sole inputs into the comparator
process. Finally, a popular class of tasks involves
choices between a reference stimulus that is held
constant for the entire experiment, and another
option that changes every trial. So, again, the choice
task is binary and includes a constant option (like
“get nothing”), but now the constant option has some
nonzero value. Typically, only the option that
changes on each trial is displayed (subjects will be
shown the reference option at the start of the

experiment and/or intermittently during the experi-
ment). Both of the choices have negligible and identi-
cal action costs. This design � which holds the SV of
one of the choices constant � is useful because the
variation in neural activity in an area encoding SVs is
driven solely by the varying option. As a result, it is
possible to look for SV signals simply by looking for
correlates with the varying option.

An initial wave of studies used the methodology
described above to identify areas in which neural
responses at the time of choice, as measured by
BOLD fMRI, correlates with measured SVs. We high-
light three studies that illustrate the use of the three
different types of paradigms. In Plassmann and col-
leagues (2007), depicted in Figure 8.3, hungry sub-
jects were shown a picture of a familiar food snack
on every trial and had to decide how much to bid for
the right to eat that snack food at the end of the
experiment. The bids provide a behavioral measure
of the SVs on every trial, since they were elicited
using the incentive compatible BDM mechanism. The
study found that responses in ventromedial prefron-
tal cortex (vmPFC) and right dorsal lateral prefrontal
cortex (dlPFC) correlated with the bids, but no other
neural correlates of SVs were found. The paper also
included a control to rule out the concern that these
signals might reflect affective responses to the foods
(e.g., arousal) that are correlated but distinct from
SVs. In Kable and Glimcher (2007), depicted in
Figure 8.4, subjects were asked to choose between
pairs of monetary rewards to be delivered with dif-
ferent delays, ranging from hours to months. One of
the options was a constant reference point involving
an immediate payoff. They found that activity in
vmPFC, ventral striatum (vSTR), and posterior cingu-
late cortex (PCC) correlated with the SV of the
delayed varying option. In Tom et al. (2007), depicted

Stimulus value signals for appetitive food items
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FIGURE 8.3 An fMRI study of
willingness-to-pay (WTP). Hungry sub-
jects made bids (either free or forced
amounts) on various snack items, which
were the only available options to eat
after the experiment. The subjective
value � measured as WTP � correlated
with increased activity in both vmPFC
(labeled as medial OFC in the paper)
and dlPFC. Figures are from Plassmann
et al. (2007).
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in Figure 8.5, subjects were shown 50/50 gambles
involving both a potential monetary gain and a
potential monetary loss, and were asked to choose
between them and a fixed reference payoff of $0. The
study found that a similar area of vmPFC and vSTR
correlated with the value of the potential gains and
losses. Similar results have been found in dozens of
follow-up studies (Hare et al., 2010; Knutson et al.,
2007; Peters and Buchel, 2009; Prevost et al., 2010; Wu
et al., 2011). Together, these studies provide conver-
gent evidence for the hypothesis that the vmPFC is
involved in the computation of SV signals during
simple choice.

However, as was emphasized in the previous sec-
tion, further tests are necessary to rule out important
confounds, and to test additional properties of the
proposed model of simple choice. First, its needs to
be ruled out that vmPFC responses might reflect

saliency like responses, such as arousal, motor prepa-
ration, or attentional modulation. One recent study
tested for this confound by showing appetitive and
aversive foods, and asking subjects to indicate if they
wanted to eat them at the end of the experiment (Litt
et al., 2011). A randomly selected decision was imple-
mented. This design made it possible to dissociate SV
signals (that increase monotonically with value) from
saliency like signals (that have a U-shape with a min-
imum for neutral items). As shown in Figure 8.6, the
study found that activity in vmPFC and PCC was
consistent with SV coding, whereas responses in dor-
sal anterior cingulate cortex (ACC), insula, supple-
mentary motor area (SMA), fusiform gyrus, and
precentral gyrus were consistent with saliency cod-
ing. The only area that exhibited a combination of SV
and saliency coding was the vSTR. In addition, a
closely related monkey neurophysiology study found
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that neurons in vmPFC were consistent with SV cod-
ing, but that activity in the premotor cortex was
more consistent with saliency coding (Roesch and
Olson, 2004).

Second, it must be determined whether or not the
vmPFC responses might encode highly correlated PE
signals, instead of the SV signals. One study
addressed this problem by combining a food pur-
chasing task with a passive monetary lottery (Hare
et al., 2008). As shown in Figure 8.7, at the beginning
of each trial subjects were shown a food and a pur-
chase price, and had to decide whether or not they
wanted to purchase it. At that time they were also
shown the outcome of an exogenous monetary lot-
tery that paid a different random amount every trial.
As a result, the PE signal at the time of choice was
proportional to the value of the trial, given by the
value of the food minus its price plus the outcome
of the lottery for trials in which the item is bought,
and to the outcome of the lottery for trials in which
it is not. Since the food and lottery parameters were
selected independently, this made it possible to dis-
sociate regions encoding PEs from those encoding
SVs. The study found that SVs were reflected in
vmPFC responses, whereas PEs where reflected in
the activity of the vSTR. A striking pattern in this
literature is that some studies find that vSTR

responses correlate with SVs, but many others do
not. This is puzzling because the PE confound is
present in virtually every choice task. Further work
is necessary to understand the source of this impor-
tant inconsistency.

Third, studies have also tested if the vmPFC
responses are modulated by action-related informa-
tion, which would be inconsistent with the encoding
of a pure SV signal. A recent fMRI study created a
paradigm in which subjects were shown the choice
options before being shown the movements required
to obtain them (Wunderlich et al., 2010). This allowed
subjects to choose one of the stimuli without
knowing which actions they would have to take to
implement that choice. The study found evidence for
SV coding in the vmPFC before the action contin-
gencies were provided, which suggests that action
information is not required for these representations.
See Glascher et al. (2009) for additional corroborating
evidence, although it should be noted that this
conclusion is not universally accepted in the neuroe-
conomics field.

Fourth, another important property of a SV signal is
that it is a precursor of choice, and thus it should not
depend on the outcome of the decision process.
Consistent with this, Hare et al. (2011a) Lim et al.
(2011) have shown that the sign and strength of the

Separating value and salience signals

dACC Insula Fusiform

mOFC, rACC, PCC
Valuation Salience

n.s.

mOFC1.5

1

0.5

B
et

a

0

***

Valuation Salience

n.s.

L-rACC1.5

1

0.5

0

–0.5

B
et

a

–1

***

3

2.5

2

1.5

1

0.5

0

–0.5
Valuation Salience

***
L-Insula

B
et

a

n.s.

2.5

2

1.5

1

0.5

0

Valuation Salience

***L-Insula

B
et

a

n.s.

Pre-scanning
liking rating task

Decision:
min{RT, 2s}

(2s-response RT)
blank

Mean 4s
blank

Time

Eating decision
task in scanner

Select random trial
for eating/not-eating

Receive selected food
item (if applicable)(A)

(C)

(B)
x=0

z =–0z = –18z = 0

FIGURE 8.6 (A) A simple choice task designed to dissociate stimulus value signals from saliency signals. (B) The study found value-
sensitive signals in both medial OFC (mOFC) and the rostral anterior cingulate (rACC), as well as PCC. (C) Saliency correlated significantly
with several distinct regions, including dorsal ACC, insular cortex (insula), and bilateral fusiform gyrus. Images are from Litt et al. (2011).

133EVIDENCE: STIMULUS VALUE SIGNALS IN BASIC VALUATION TASKS

NEUROECONOMICS



vmPFC responses at the time of choice depend on the
stimuli being evaluated, but not on which of them is
chosen.

Fifth, according to our model, SVs are used as
inputs to the comparison process (either directly, or
indirectly through the computation of AVs, as shown
in Figure 8.1C). As a result, one would expect that
areas involved in SV computations would exhibit
increased functional connectivity with the network
involved in the comparison process at the time of mak-
ing decisions. Two studies found several pieces of key
evidence consistent with this (Basten et al., 2010; Hare
et al., 2011b). In particular, Hare et al. (2011b) argues
that a brain area involved in implementing the com-
parison process must exhibit the following properties:
(i) its activity in each trial at the time of choice should
correlate with the total level of activity predicted by
the a neural implementation of the best fitting DDM of
the task; (ii) it should receive as an input signals from
the area of vmPFC involved in SV computation; and
(iii) it should modulate activity in the motor cortex in
a way that is consistent with implementing the choice.
The study found that activity in dorsomedial prefron-
tal cortex (dmPFC) and the bilateral intraparietal sul-
cus (IPS) satisfy the three required properties.

Additional corroborating evidence can be found in
the neurophysiology literature. For example, neurons
in dmPFC have been shown to reflect several different
decision variables (Kennerley et al., 2009, 2011),
making this region ideally qualified to compare the
SVs and ACs of different options and select the best

course of action. For further details on the computation
and comparison of AV, please refer to Chapter 22.

Jointly, the results described in this section provide
strong evidence in support of the hypothesis that
vmPFC responses at the time of making a simple
choice reflect the computation of a SV that is passed
(either directly or indirectly through the computation
of action values, as in Figure 8.1C) to a comparator
system, implemented in areas such as dmPFC and IPS,
in order to guide choices.

A significant amount of effort in the field has been
devoted to investigating if these key findings are robust
to different specifications of the choice task, and if the
same region of vmPFC encodes the value of different
types of stimuli. Although much work remains to be
done, the evidence so far suggests that the findings are
quite robust. Consider a handful of examples. One
study asked individuals to make choices between a con-
stant reference item and three different types of goods:
Caltech bookstore paraphernalia, foods, and monetary
lotteries (Chib et al., 2009). The data revealed that the
same vmPFC region identified above correlated with
the SVs of the three types of objects (Figure 8.8).
Futhermore, the location of the SV signals were the
same regardless of the type of good (food, parapherna-
lia or money) used as the constant reference option.
Thus, the finding stands even when subjects are not
forced to make comparisons to a monetary scale.
Further evidence for the stability of the vmPFC value
signal across stimulus modalities is provided by Levy
and Glimcher (2011). Several studies have also shown
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that the vmPFC correlates with SVs during social
decision making (Hare et al., 2010; Lin et al., 2012).
Studies have also shown that vmPFC encodes the over-
all SV of the choice options, even in circumstances
when they have to be computed by integrating complex
information (Figure 8.9), such as different reward prob-
abilities (Kahnt et al., 2011; Philiastides et al., 2010). The
SV representations in vmPFC have even been shown to
be present when individuals are not explicitly making
choices and are instead “passively” exposed to the
stimuli (Lebreton et al., 2009), sometimes associated
with the phrase “automatic valuation” (Figure 8.10). In
fact, the signals are robust enough to be able to predict
subsequent choices (Levy et al., 2011; Smith et al., 2010;
Tusche et al., 2010).

Several papers have also investigated if the same
area of vmPFC encodes the SV of appetitive and aver-
sive items using a common scale. This question is moti-
vated by the fact that many psychological theories
assume that choices among appetitive items, sometimes
called approach choice, and choices among aversive
items, sometimes called avoidance choice, involve sepa-
rate systems (Larsen et al., 2004). Under this theory, the
approach system encodes how good a stimulus is, and

thus correlates positively with SVs. In contrast, the
aversive system encodes how bad a stimulus is, and
thus correlates negatively with SVs. An fMRI study
compared the areas involved in computing the value of
appetitive and aversive food items using a bidding
task, and found that common areas of vmPFC corre-
lated positively with the SV of the items, regardless of
their valence (Plassmann et al., 2010). Related studies
using multi-attribute monetary stimuli involving gains
and losses suggest that both of them are processed and
integrated in the same area of vmPFC (Basten et al.,
2010; Park et al., 2011; Tom et al., 2007). These studies
are important because they show that, at least in the
case of simple choice, the same area of the brain seems
to encode the decision value for both types of choices,
thus providing evidence against the hypothesis that
there are separate appetitive and aversive valuation
systems in goal-directed choice.

Finally, a number of studies also investigated the
timing with which SV signals appear in vmPFC.
Behaviorally, one study found that individuals can
make value maximizing choices with above chance
reliability in about 300 milliseconds (ms), which implies
that SVs must be computed faster than this
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(Milosavljevic et al., 2011). An EEG and source recon-
struction to identify the area of vmPFC associated with
the computation of SVs, and found that a very similar
area to the one identified in the fMRI studies exhibited
activity proportional to the SVs about 400 ms into the

decision process (Harris et al., 2011). Similarly, another
study employed MEG to investigate related questions
and find reliable SV in vmPFC in a similar time scale
(Hunt et al., 2012). Finally, another fMRI study investi-
gated the duration of the SV signals computed while
subjects made Yes/No food choices at different exoge-
nously imposed speeds (Sokol-Hessner et al., 2012). The
results suggest that the SV computations in vmPFC and
dlPFC were slower in slower trials, even though the
additional computation time had little impact on the
quality of the choices.

Although this chapter has demonstrated that SVs
appear to reliably be encoded in vmPFC, how precise is
the localization in vmPFC? A careful look at the studies
of SV highlighted in this chapter shows the area of
vmPFC identified in all of these humans studies is fairly
consistent (Levy and Glimcher, 2012; Roy et al., 2012).
Furthermore, although the evidence so far is only corre-
lational, the stringent nature of all the additional tests
described above provides increased support to this
hypothesis. The limited existing evidence on causality,
which will be discussed in a later section, is also sup-
portive of this conclusion.

These results suggest an anatomical and functional
dissociation between the vmPFC, which is involved
in computing stimulus values, and areas of dmPFC
and IPS which are involved in implementing the
comparison process. As depicted in Figure 8.11A, in
humans vmPFC includes regions of medial orbitofron-
tal cortex (OFC, areas 11 & 14), as well and part of
ventral medial cortex (area 10), but does not include
central or lateral OFC (areas 13 and 12/47 respectively)
(O’Doherty, 2011; Wallis, 2012). Interestingly, vmPFC
is reciprocally connected with many areas involved in
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affect and cognition, such as hippocampus, amygdala,
hypothalamus, striatum, and other parts of prefrontal
cortex (see Chapter 12), but is weakly connected with
motor areas (Carmichael and Price, 1995; Ongur and
Price, 2000). This puts it in a good position to be able
to compute SVs, but not to influence decisions directly.
In contrast, the dmPFC (sometimes similar regions are
labeled as areas of dorsal ACC) is heavily inter- con-
nected with both supplementary motor areas and areas
of vmPFC thought to be involved in valuation, but not
with sensory areas (Beckmann et al., 2009; Picard and
Strick, 2001). A recent parcellation of the entire cingu-
late cortex (Beckmann et al., 2009) found distinct con-
nectivity for regions discussed in this chapter with
respect to SV, primarily clusters 1 and 2, compared
with other regions potentially involved in AV, namely
clusters 3 through 5 (Figure 8.11B). Another study also
completed a functional parcellation of orbitofrontal
cortex (OFC), which also includes regions commonly
labeled as vmPFC in studies of SV (Kahnt et al., 2012).
This analysis of fMRI data indicated distinct connectiv-
ity to regions discussed in this chapter, including IPS,
ACC, and PCC (Figure 8.11C).

COMPLICATION: ATTENTION
MODULATES THE COMPUTATION

AND COMPARISON OF
STIMULUS VALUES

Although the model and choice tasks described
above have been widely used, they do not encompass
many simple choice situations of interest. As an

example, consider the following situation: choose
between a food shown in the left visual field by press-
ing a button with the left hand, and another food
shown in the right visual field by pressing another but-
ton with the right hand. This simple example does not
correspond to any of the previous studies for a simple
reason: both options are allowed to vary every period,
so that there is no constant reference option.

Moving to this type of choice environment introduces
two important complications. First, suppose that there is
relative SV coding (in the sense that the SV of every item
is encoded as the difference between its value and that
of a reference point, say SVoption � SVreference), as it seems
to be the case from the behavioral (Ericson and Fuster,
2011; Kahneman and Tversky, 1979) and neural data
(De Martino et al., 2009). Then, it is not obvious which of
the two options should serve as the reference point from
which relative values are computed, since both of them
are changing every period. Second, attention is likely to
fluctuate among the different items being evaluated
during the course of the decision, and this might affect
the SV computations. Note that this is not a theoretical
curiosity, but something that needs to be addressed to
understand simple choices in the real world, such as
how an individual works through all the options at a
buffet table.

Figure 8.12 depicts two binary choice tasks that have
been repeatedly used in previous studies. In
Figure 8.12A, subjects are shown pairs of snack foods,
and are free to fixate back-and-forth until they are ready
to make a choice by pressing a button (Krajbich et al.,
2010). In Figure 8.12B, subjects have to choose between
the left and the right options, which are associated with
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a stochastically evolving probability of paying a reward
(Behrens et al., 2007; Boorman et al., 2009). The subjects
learn the probabilities by trial and error, with the size of
the monetary prize for each option being randomly
drawn each trial from a known distribution. This last
property ensures that subjects cannot make a choice
until all of the payoff information is provided (Behrens
et al., 2007; Boorman et al., 2009).

Both tasks involve binary choices among options that
change every trial, and action costs that are negligible
and equal across options. The model in Figure 8.13
extends the model of simple choice to accommodate the
additional complications. As before, it assumes that SVs
and ACs are computed separately, that they are inte-
grated into a net AV signal, that the AV signal is passed
to the comparator to guide the choice process, that the
values are computed from the time the options are pre-
sented to the time a choice is made, and that value com-
putations are made using a relative subjective value
(RSV) code. The key difference is in how the reference
points are selected. The model now assumes that at any

point in time, SVs and ACs encode the value/cost
of the attended option minus the value/cost of the
unattended one. Thus, when the subject looks left, the
SV signals encode the value of left minus the value of
right stimuli, and the opposite is true when he looks
right. This implies that visual attention at any particular
instant determines the identity of the reference point.
One additional assumption is that the SV value of the
attended item might be weighted more heavily, so that
the relative SV signal is given by:

RSVt 5α SVðattended itemtÞ2 SVðunattended itemtÞ:
ð8:2Þ

The parameter α measures the strength of the atten-
tional bias, with α5 1 denoting the case of no bias.

In the types of tasks studied here, the ACs are iden-
tical and negligible, and as a result they can be
assumed to be zero. This implies that AVs are directly
proportional to SVs, and that the same attention-based
relative value code applies there. If this where not the
case, the AC signals would be computed using an
analogous attentionaly modulated relative code.

The model discussed in this section is known as the
attentional DDM (aDDM) (Krajbich and Rangel, 2011;
Krajbich et al., 2010, 2012), and it assumes that the com-
parator process is described by an extension of the
DDM. As depicted in Figure 8.13, the model is similar
to the basic DDM: it takes the AVs as inputs and inte-
grates dynamically subject to some Gaussian noise until
the accumulated evidence for one of the two responses
becomes strong enough to cross the pre-specified bar-
riers. The key difference is that the accumulator signal
inherits the attentional modulation properties of the
SVs and AV signals. This implies that the integrated
relative value signal in favor of choosing the left option
over the right option evolves according to:

Rt11 5Rt 1α SVðattended itemtÞ
2 SVðunattended itemtÞ1εt;

ð8:3Þ

All other elements of the model remain unchanged
(refer to Figure 8.1), and methods for identifying the
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other model parameters outlined here and in other
chapters still apply. As in the DDM, the εt term reflects
independent and identically distributed Gaussian
noise in the integration process.

The model has several novel properties, in addition
to those generated by a more standard DDM. First, it
makes strong quantitative predictions about the corre-
lation between attention, choices, and reaction times.
These predictions can be tested by combining eye-
tracking (which provides an instantaneous measure of
visual attention in the form of the identity of the stim-
ulus being fixated), choice and reaction time data. For
example, it predicts sizable choice biases when α. 1:
options that were fixated on more, due to random fluc-
tuations in attention, were more likely to be chosen.
Using these methods, an eye-tracking study carried
out a systematic test of the extent to which the aDDM
model can explain these types of patterns, and found
that it is able to account for them with high quantita-
tive accuracy (Krajbich et al., 2010). Second, it predicts
that experimenter induced changes in attention (for
example, through marketing manipulations) should
bias choices in favor of the most attended option when
its value is positive, but it should have the opposite
effect when the value is negative. Consistent with this
prediction, several studies have found that it is possi-
ble to bias choices through these types of manipua-
tions (Armel et al., 2008; Milosavljevic et al., 2010;
Shimojo et al., 2003). Third, it predicts that if the fixa-
tion process is independent of the value of the stimuli
(so that, for example, higher value items are not fix-
ated on earlier or longer), and there is an attentional
bias, then there will be a bias towards fixating on the
last option that increases with computation time. The
data in the paper first outlining the aDDM (Krajbich
et al., 2010) exhibits both of these patterns.

This last point is critical for understanding the neural
properties of the SV signals that one would expect to
find with techniques like fMRI, that have limited tem-
poral resolution. The model predicts that in the absence
of an attentional bias (i.e., α5 1 in the aDDM model), the
average value SV signal in vmPFC over the course of a
decision trial should be zero. In this case it would not
be possible to identify the underlying SV signals using
fMRI. In contrast, if there is an attentional bias (i.e.,
α, 1), and visual attention is not measured and con-
trolled for (as is the case in most studies), the model
predicts that the measured SV signal would reflect the
underlying attentional bias for the chosen item. In this
case, activity in a SV coding area would correlate with
the SV of the chosen item minus the SV of the unchosen
item. Since this has been a source of confusion in the
literature, it is important to emphasize that fMRI
measures of the SV signals take this form not because
they reflect the outcome of the choice process (as has

been argued by Hunt et al., 2012; Jocham et al., 2012), or
because they actually encode the value of the chosen
and unchosen items, but as a consequence of the prop-
erties of the underlying data generating process, and of
the limitations of measuring neural signals with fMRI
(which have poor temporal resolution, and thus aver-
age activity across fixations).

These limitations point to the value of complement-
ing or combining fMRI with methods, such as EEG and
MEG, that have better temporal resolution. In the pres-
ence of an attentional bias, and as long as attention is
not measured and controlled, the model predicts that
the SV signal in vmPFC should reflect both the left and
right SVs early on, when the attentional bias towards
the chosen item is low, and gradually switch to reflect
the difference in value between the chosen and the
unchosen items as the trial progresses. As long as the
source of the SV signals can be reliably localized using
these methods (a topic of some controversy, but there
have been some efforts to localize such signals; Harris
et al., 2011; Hunt et al., 2012), these temporal properties
of the signal can be tested using the high temporal
resolution measurements provided by EEG or MEG.

One fMRI study carried out a critical test of the role
of visual attention in the computation of SV signals.
They asked subjects to perform the binary food choice
task in Figure 8.14A inside the scanner with two impor-
tant twists (Lim et al., 2011). First, they exogenously and
randomly manipulated the duration and location of
fixations. Second, in order to deal with the limited tem-
poral resolution of fMRI, the choice process was slowed
down: fixation duration ranged from 1 to 4 seconds,
and each item was seen twice before a choice could
be made. Consistent with the model, they found that
the activity in the same areas of vmPFC discussed
before correlated with an attentionally modulated rela-
tive code (Figure 8.14A, bottom). The same was true for
the vSTR.

A recent MEG study (Hunt et al., 2012) studied the
evolution of the vmPFC responses during the course of
a binary choice, but did not control for visual attention.
Also consistent with the predictions of the model, they
found that activity in this area gradually switched from
reflecting the sum of the SVs to the difference between
the value of the chosen and unchosen options.

Several fMRI studies have looked at the value
signals encoded in various types of binary choices. For
example, the authors of one fMRI study investigated
the nature of value coding in the task shown in
Figure 8.14B (Boorman et al., 2009). As predicted by
the model describing the role of attention in the com-
putation of SV signals, the study found that vmPFC
responses at the time of choice correlated with the
value difference between the chosen and unchosen
items. Similar results have also been found in other
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fMRI studies comparing SV signals for chosen and
unchosen options (FitzGerald et al., 2009; Glascher
et al., 2009; Talmi et al., 2009).

A reconsideration of some recent monkey neuro-
physiology studies also highlight the importance of
controlling for attention. In particular, there are a large
number of neurophysiology papers that have recorded
the activity of neurons in the central OFC (cOFC;
Brodmann’s area 13) during binary decision-making
tasks. (Note that most human fMRI studies reference
vmPFC for SV signals, whereas many monkey studies
report positive results from OFC, a topic of recent
discussion; Wallis, 2012.) An extremely influential
study is Padoa-Schioppa and Assad (2006), which is
depicted in Figure 8.15. Thirsty animals make choices
between different amounts of two juices, A and B. The
location and amount of the juices changed every trial.
Animals indicate their choices through eye-movements
when prompted to do so. Using the methods described
above, the authors were able to estimate the SVs of all

of the options. Their key finding was that during the
evaluation period the responses of a sizable fraction
of neurons in cOFC correlated with either the SVs of
specific juices, or with the value of the chosen option.
(The results in the supplementary materials section of
that paper suggest that some units might also reflect
the value difference between the chosen and unchosen
options). This has been widely interpreted as evidence
that single units in the OFC encode the value of the
chosen option. However, since the study does not con-
trol for visual attention, for the same reasons described
above, the units reflecting chosen minus unchosen
values are also consistent with the computation of
attentionally modulated relative value signals. In the
case of thirsty and highly trained animals, it may be
that the attentional bias is particularly strong, which
would further increase the attentional modulation of
the chosen option, compared to the unchosen one.
Despite this important caveat, the study also provided
a separate but criticial insight: the monkey OFC seems

FIGURE 8.14 Implications for chosen value signals with and without accounting for attention. (A) An fMRI study asked subjects to per-
form the binary food choice task that exogenously and randomly manipulated the duration and location of fixations (yellow arrows illustrate
target positions). The study found vmPFC correlated with an attentionally modulated relative value (bottom), meaning the same relative value
(left minus right) was greater when subjects fixated left (red) than when they fixated right (blue). Data are from Lim et al. (2011). (B) In an fMRI
study with a task similar to the one shown in Figure 8.12B, subjects chose between two stochastic monetary rewards (top). Time courses reveal
a positive correlation with the chosen reward and a negative correlation with the unchosen reward in vmPFC. Further, the relative chosen
value (chosen minus unchosen) was encoded in vmPFC. Data are from Boorman et al. (2009).
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to contain an equal proportion of neurons involved in
absolute and relative coding. This observation, which
has also been replicated (Kobayashi et al., 2010), is
important because it suggests that the OFC might first
compute the absolute value of the stimuli and then use
it to compute a relative and attentionally modulated
representation to be passed to the comparator.

Another important and related study is depicted in
Figure 8.16 (Kennerley et al., 2011). Thirsty animals
made choices between pairs of stimuli that were asso-
ciated with different amounts of juice delivered with
various probabilities, as well as different amounts of
required effort (in the form of different numbers of
lever presses). Importantly, the lever presses were not
part of the choice process, and in fact were “paid” by
the monkey at a separate time, thus representing a
negative attribute of the stimuli, and not an action
cost. Another important feature of their experiment is
that in any given trial the stimuli only differed in one
of the dimensions, and that to make choices non-trivial
items with adjacent values were always paired against
each other. This last feature is important because it
makes it impossible to distinguish between correla-
tions with SVs (which reflect the value of stimuli

independently of the choice made) and chosen values
(which reflect the value of the chosen option). A key
finding of the study is that units in cOFC (area 13)
were more likely to be consistent with the encoding of
SV signals. Since the authors did not control for visual
attention, the same issues regarding the interpretation
of chosen value signals apply here.

An important limitation of the model outlined here
is that it does not provide an explanation of what
drives the attentional process. One natural hypothesis
is that the fixation process is driven in part by the
underlying values of the stimuli. However, the data
from tests of the aDDM (Krajbich and Rangel, 2011;
Krajbich et al., 2010, 2012) suggest that this is not the
case: the fixation process exhibits spatial biases (e.g.,
first fixation to the left item are more likely), but is
uncorrelated with independently taken measures of
the SVs. A more subtle version of this hypothesis is
that at any point in time, attention is modulated by the
current representation of the raw and integrated sig-
nals, such as those present in vmPFC and dmPFC.
Testing this theory is difficult because it requires
instantaneous measures of these signals, but is a criti-
cal open question for future research.
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THEORY: HOWARE STIMULUS
VALUES COMPUTED?

The previous findings support the hypothesis that
vmPFC responses at the time of decision encode a
SV signal. But this raises another important and rela-
tively unexplored question: how are these SV signals
computed?

One popular theory states that SVs are learned
through reinforcement learning and repeated experi-
ence with the stimuli, and that the SVs are simply
stored in frontal cortex and retrieved at the time of
decision (see Chapter 15). Although this process is
likely to be at work in settings where subjects repeat-
edly face a small number of stimuli, it cannot account
for the fact that humans easily evaluate novel stimuli.

An alternative view is provided by the attribute inte-
gration model of SV computation. The model builds on
the fact that most stimuli are complex bundles of more
basic attributes (e.g., foods can be described by a list of
perceptual properties such as size, color, and texture).
Using this fact, the model hypothesizes that animals
evaluate any stimulus, novel or not, by learning the
value of the basic attributes that make up the stimulus

and then integrating those attribute values into an
overall stimulus value at the time of choice.

This model is illustrated in Figure 8.17. Consider
the problem of assigning a value to eating an apple.
This consumption act has implications for several basic
attributes, or dimensions, such as taste, caloric intake,
vitamin and mineral regulation, as well as more
abstract dimensions such as health and self-image.
Let di(x) denote the characteristics of stimulus x for
attribute i. The model assumes that:

SVðxÞ5
X

widiðxÞ; ð8:4Þ

for some set of set of attribute weights wi. In other
words, the SV is a linear weighted sum of all consid-
ered attributes.

The model has interesting properties. First, it
implies that the SVs used to guide choices depend on
the attributes that are assigned for each option at the
time of choice. This implies that the choice process
takes into account the value of an attribute only to the
extent that the brain can take it into account in the con-
struction of the decision values. Second, it provides
two distinct sources of individual differences: weights
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might vary because of heterogeneity in preferences for
an attribute, or weights might vary because of hetero-
geneity in a decision-maker’s perception of that
attribute.

Although much work remains to be done in testing
this component of the computational model, several
studies have provided supporting evidence for the
attribute integration model. One such study looked at
dietary choices that involved self-control (Hare et al.,
2009). Hungry subjects were asked to make choices
about which foods they wanted to have as a snack.

Subjects were shown a variety of foods that varied inde-
pendently in their healthiness and taste. Prior to the
choice task, taste and health ratings were collected for
each of the foods. As shown in Figure 8.18A, the
authors found activity in the vmPFC correlated with
both attributes. More importantly, the relative weight
that the attributes received in the decision value signals
measured in the vmPFC were correlated, across sub-
jects, with the weight given to them in the actual
choices made by the same subjects. Interestingly, the
study also found that health information was
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represented in vmPFC only when a region of left dlPFC
was activated. A functional connectivity analysis
(Figure 8.18B) suggested that dlPFC might modulate
the weight placed on different attributes during value
computation in OFC. A follow-up study (Hare et al.,
2011a) found that exogenously driven increases in the
amount of attention paid to the health attributes (by
asking subjects to “consider the healthiness” of the
foods) increased the extent to which they were repre-
sented in the vmPFC stimulus value signals and the
healthiness of the choices.

Additional evidence for attribute integration comes
from an fMRI study of charitable decision making
(Hare et al., 2010). Subjects were shown descriptions
of different charities and had to decide how much
to donate to them. The study found that vmPFC
responses at the time of decision correlated with behav-
ioral measures of the value that a particular subject
assigned to the charities. Moreover, functional connectiv-
ity analyses suggest that the vmPFC value signals inte-
grated inputs from anterior insula and posterior superior
temporal cortex (pSTC), areas thought to be crucial for
social cognition. A related study compared the network
involved in making equivalent decisions either for
one-self or on behalf of another individual (Janowski
et al., 2013). The study found that similar areas of vmPFC
encode the SVs in both cases, but that functional connec-
tivity between pSTC and vmPFC is critical when making
choices on behalf of another, but not for self.

EVIDENCE FOR A CAUSAL ROLE OF
THE STIMULUS VALUE SIGNALS

IN vmPFC

Despite the compelling nature of the evidence in
favor of the encoding of SV signals in vmPFC, fMRI
and neurophysiological measurements are essentially
correlational. Just observing that activity in these areas
is correlated with SVs is not sufficient to establish that
they play a causal role in the choice process. This dis-
tinction is important because the theories of choice
described in this chapter posit a causal role for the SV
signals.

The gold standard for causally linking neural activ-
ity to choice behavior would be to precisely manipu-
late vmPFC responses at the time of choice and test if
they lead to changes in the choices that are qualita-
tively and quantitatively consistent with the model.
A recent study, which combined repetitive transcranial
magnetic stimulation (rTMS) in dlPFC with fMRI, pro-
vides preliminary evidence of this type (Baumgartner
et al., 2011). The study measures vmPFC responses
at the time of decision by collecting fMRI data immedi-
ately after applying rTMS to dlPFC. The results show

that rTMS applied to the right dlPFC diminished the
activation in both dlPFC and vmPFC, as well as the
functional connectivity between them. Most impor-
tantly, this neural change was associated with a consis-
tent change in choice behavior.

The only other information currently available regard-
ing the causality of the vmPFC SV signals comes from
choice experiments involving clinical populations with
focal lesions in regions in and around vmPFC, an area
that is sometimes referred to as the ventromedial frontal
lobe (vmFC). Several hypotheses discussed in this chap-
ter with respect to vmPFC function are supported by
clinical work. In several studies, individuals with vmFC
damage consistently violate transitivity in simple choice
experiments (Camille et al., 2011a; Fellows and Farah,
2007); individual ability to value-maximize appears to be
impaired with vmFC damage. Similar impairments of
value comparison have been seen in macaques, with
vmFC lesions leading to more erratic choice behavior
when available options are closer in value (Noonan et al.,
2010). A similar change in behavior has also been dem-
onstrated in intertemporal choice, as damage to vmFC
(particularly focal to medial OFC) increased significantly
the preference for small-immediate over larger-delayed
rewards, effectively steeper discounting of future
rewards (Sellitto et al., 2010). Still, while these studies
demonstrate consistent impairment of value-based
choice across different decision domains, at this point
the neurology literature does not definitively conclude
whether vmFC � including vmPFC � damage impairs
the ability to compute stimulus values, compare stimu-
lus values, or both (Fellows, 2011).

Much evidence points to the ACC working in concert
with the vmPFC/OFC to guide value-based behavior,
and lesion studies can also contribute to understanding
the complex relationship between these regions, a point
developed in some detail in Chapter 22. While ACC
does frequently appear to encode value signals, it has
been shown that these neurons reflect a multiplexed
signal that integrates different types of information
(Hayden and Platt, 2010; Kennerley et al., 2009). Lesion
studies indicate at least two potential relationships.
First, lesions in vmPFC/OFC disrupt stimulus�reward
but not action�reward association, whereas dACC
lesions (which likely include damage to dmPFC) had
the opposite effect (Camille et al., 2011b). Second, ACC
sulcus lesions in macaques have also been shown to
impair the ability to integrate reward history to appro-
priately guide current behavior (Kennerley et al., 2006).
A recent analysis of a large set of humans with focal
lesions (Glascher et al., 2012) also established a causal
relationship linking vmPFC to value-based decision
making, and one linking ACC and dlPFC to functions
typically grouped under cognitive control (such as
response inhibition and task switching).
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Although this body of literature also appears to be
converging towards a core set of results, the precise
mechanisms at work are not yet known. Clearly, as in
most of cognitive neuroscience, much more work has
to be done in probing the causality of the various
components of the neural mechanism of simple choice.
Procedures that probe the root of individual differences
will be crucial, as will cutting-edge methods, such as
optogenetics (Deisseroth, 2011; Fenno et al., 2011),
all with computational modeling to test if the causal
effect of these manipulations are consistent with both
the qualitative and the quantitative predictions of the
theory.

CONCLUSIONS

Understanding simple choices is a foundational goal
for neuroeconomics. Simple choices provide the basic
framework in which to study the computational and
neurobiological basis of decision making. Furthermore,
the processes and systems at work in simple choice are
likely to contribute to complex choices, such as those
involving self-control issues, tradeoffs between self
and others, and strategic considerations.

Several pieces of a neural model of simple choice
are now in place. A growing body of data supports the
hypothesis that vmPFC encodes SVs at the time of
choice, that the SV signals use an attention-modulated
relative subjective value code, and that these values
are integrated using a comparator processes with
computational properties that are well-described by
the attentional drift-diffusion model (Krajbich and
Rangel, 2011; Krajbich et al., 2010). This model provides
a firm foundation on which to build our understanding
of more complex processes.

Despite the successes in working towards an under-
standing of simple choice, neuroeconomics remains a
young field with many open questions and debates,
such as the precise neural mechanisms behind these
computations. The good news is further refinements of
the model described in this chapter are currently being
explored through application of the methods described
in this book. Many of the open questions outlined here
will be resolved by the time the third edition of this
book is written.

One of the central messages of this chapter is the
importance of theory and computational modeling.
Both of these ingredients are critical for making sense
of the body of findings in the domain of simple choice,
for helping to design meaningful tests that account for
the limitations of our neural measurement techniques,
and for correctly interpreting the data. For example,
without a full specification of the valuation and choice
process, it would be impossible to untangle why

neural activity in an area encoding relative stimulus
values � which are a precursor and input to the choice
process � might also exhibit neural responses that are
correlated with the chosen value, which contain post-
decision information. The fundamental importance of
computational models will only increase as the field
moves into more complex forms of choice.

Although the chapter has outlined several points
of convergence across studies of simple choice, there
remain several pressing questions in the domain of
stimulus valuation and simple choice.

What is the Neural Code Used to Represent
Stimulus Values in vmPFC?

Thus far, every well-understood system (e.g., vision)
is organized around a code that describes how signals
are attributed to specific neurons, and how the popula-
tion activity can be decoded to extract the stored
information so that it can be used in downstream com-
putations. For example, retinotopic maps (in which
real physical space is represented in the brain using a
spatial code) is common in visual sensory and motor
systems. Is the computation of SVs organized around a
similar code? One natural hypothesis is that vmPFC
makes use of an attribute code, so that different units
represent the component of value due to the particular
combination of attributes that they represent, and that
SVs are represented in the population firing rates, and
not on the activity of any single unit. If correct, this
would help to make sense of the sizable heterogeneity
in single unit activity that has been found in single
unit studies (Jenison et al., 2011; Kennerley et al., 2011;
Padoa-Schioppa and Assad, 2006).

What and How is the Attribute Space Used
in SV Computations?

As discussed in the previous section, theory and
evidence suggest that SVs are computed by identifying
the attributes of stimuli, evaluating them, and then
integrating them into a total value representation for
the stimulus. The data suggest that the computation of
some of these attributes might take place outside of
vmPFC, and those values are then passed to vmPFC to
be integrated into the final SV signal. However, little is
known about what aspect of or how attribute space
is employed to carry out these operations.

Computational Roles of PCC, dlPFC, vSTR
and Amygdala in Simple Choice

Some studies find that neural responses in some
areas are correlated with SVs at the time of choice in a
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way that is not easily attributable to arousal, attentional,
motor, or prediction error confounds (Litt et al., 2011;
Tom et al., 2007). However, in contrast to the vmPFC
responses, which are extremely robust, these other
areas correlate with SVs in some, but not in all para-
digms. This suggests that they play a role in simple
choice, but that the computations that they carry out
are likely to be different than just encoding SVs. For
example, a recent model proposed PCC as a region
determining the level of internal or external engage-
ment, as needed for a current environment (Pearson
et al., 2011). Resolving this puzzle is one of the most
important open questions in the domain of simple
choice.
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