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Abstract

It is increasingly clear that simple decisions are made by computing decision values for the options under consideration, and then
comparing these values to make a choice. Computational models of this process suggest that it involves the accumulation of
information over time, but little is known about the temporal course of valuation in the brain. To examine this, we manipulated the
available decision time and observed the consequences in the brain and behavioral correlates of choice. Participants were scanned
with functional magnetic resonance imaging while they chose to eat or not eat basic food items, in two conditions differing in the
amount of time provided for choice. After identifying valuation-related regions with unbiased whole-brain general linear models, we
analyzed two regions of interest: ventromedial prefrontal cortex (VMPFC) and dorsolateral prefrontal cortex (DLPFC). Finite impulse
response models of the upsampled estimated neural activity from those regions allowed us to examine the onset, duration and
termination of decision value signals, and to compare across regions. We found evidence for the immediate onset of value
computation in both regions, but an extended duration with longer decision time. However, this was not accompanied by behavioral
changes in either the accuracy or determinants of choice. Finally, there was modest evidence that DLPFC computation correlated
with, but lagged behind, VMPFC computation, suggesting the sharing of information across these regions. These findings have
important implications for models of decision value computation and choice.

Introduction

There is a growing consensus that the brain makes simple decisions by
assigning a decision value (DV) to the options under consideration,
and then comparing these values to make a choice (Rangel & Hare,
2010; Padoa-Schioppa, 2011; Rushworth et al., 2011). In this
framework, understanding the DVs’ properties is critical because they
affect the choices that are eventually made. For example, if DVs are
noisy when decisions are made under time pressure then so are choices
(Milosavljevic et al., 2010, 2011).

A considerable amount has been learned about the computational
and neurobiological properties of the DV signals. A large number of
studies, using different species and techniques, consistently link
activity in the ventromedial prefrontal cortex (VMPFC) with the
computation of DVs at the time of choice (Rangel & Hare, 2010;
Wallis & Kennerley, 2010; Padoa-Schioppa, 2011). Activity in
dorsolateral prefrontal cortex (DLPFC) also frequently correlates with
DVs, though less consistently (Kable & Glimcher, 2007; Plassmann
et al., 2007, 2010; Litt et al., 2010). In several decision tasks
involving self-control, the DV signals in VMPFC seem to be

constructed using inputs from DLPFC areas that do not encode for
DVs themselves (Hare et al., 2009, 2011a; Figner et al., 2010;
Baumgartner et al., 2011). Finally, recent studies have shown that
similar areas of VMPFC and DLPFC are part of the network involved
in comparing DVs to make a choice (Basten et al., 2010; Hare et al.,
2011b).
Although these findings have established the critical role of

VMPFC and DLPFC in the computation of DVs at the time of
choice, the nature of the DV signals encoded, as well as how they
relate to choices, have not been systematically investigated. Four
questions are of particular interest. First, does the available decision
time affect the duration and quality of decision value signals in
VMPFC and DLPFC? Second, do the changes in the DV signals have
an effect on the quality of choices? Third, are there differences
between regions in how decision value signals evolve over time within
decision episodes? And fourth, are there differences in the stimulus
information that is used to compute the decision value signals in
VMPFC and DLPFC (e.g., taste vs. health attributes for foods)?
The answers to these questions are important because they have

direct bearing on the properties and quality of the decision-making
circuitry, and how it is affected by environmental variables such as
time pressure or distraction. For example, it is not known whether the
brain keeps refining its estimates of DV if given extra decision time or
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whether it stops computing them as soon as the estimate is
satisfactory, even if extra time remains (Kiani et al., 2008). In the
former case extra decision time could have a positive effect on the
quality of choices, but in the latter it is just wasted time. The
relationship between the two DV signals is also poorly understood.
Some have argued that VMPFC signals serve as precursors to DLPFC
signals, which eventually drive choices (Wallis & Miller, 2003). In
contrast, in other decision paradigms the influence appears to go in the
other direction (Hare et al., 2009; Baumgartner et al., 2011).
Here we describe the results of a functional magnetic resonance

imaging (fMRI) experiment in which participants were asked to make
consumption decisions about snack foods under two externally
controlled decision speeds: fast (1 s) and slow (4 s) choices. The
results of the experiment allow us to systematically test specific
hypotheses associated with each of these three questions (see Results
section for details).

Materials and methods

Participants

Twenty-eight participants completed both sessions of the study (eight
females; mean ± SD age, 22.4 ± 0.6 years). Of these, six participants
were excluded from data analysis: one due to scanner malfunction
during the study, two for excess head motion during scanning (total
translation > 3 mm or total rotation > 2.45� in any single volume), and
three due to highly atypical behavioral responses that suggested that
they were not taking the task seriously (i.e. responding without
considering the stimuli, as demonstrated by having identical consec-
utive responses in more than 50% of trials). Twenty-two participants
were used in the analyses (six females, mean ± SD age,
22.6 ± 0.6 years). All participants gave written informed consent, and
all procedures were approved by Caltech’s Institutional Review Board.

Task

The experiment took place over two sessions, separated by 1–4 days.
On day 1, we collected basic subject-specific information about the
stimuli used in the experiment. On day 2, participants performed an
in-scanner choice task.

Day 1

For the first behavior-only session, participants were asked to fast for
at least 4 h prior to the experiment. Participation in the task was
contingent on signing a statement affirming that they had not eaten or

drunk anything except water for the past 4 h, and reporting no food
allergies or intolerances. During this session, participants rated 249
color images of different appetitive and aversive snack food items (e.g.
Kit-Kat bar, apple slices, Spam; see Supporting Information for a
complete list) on three different five-point scales: Liking (Strongly
Dislike to Strongly Like), Tastiness (Very Bad to Very Good) and
Healthiness (Very Unhealthy to Very Healthy). Ratings were blocked,
so that all ratings for a given type were completed before moving on to
ratings for a different type. Liking ratings for all foods were assessed
first, randomly followed by ratings of Healthiness and Tastiness (order
counterbalanced across participants).
On every trial, participants were shown one of the food items for 1 s,

with a white box around it, during which they could not respond.
Immediately after the box disappeared, participants entered ratings at
their own pace. Their response was followed by a 1-s feedback screen
displaying the rating they had selected. Trials were separated by a
uniform random 1- to 3-s screen with a centered fixation cross. Ratings
scaleswere displayed and explained before each block, and the left–right
order of each rating type was separately randomized across participants.

Day 2

The same 4-h fasting and screening criteria were implemented in the
second session. After detailed instruction, participants performed a
simple choice task in the scanner. Every trial they were shown one
food item and had to decide whether they wanted to eat it at the end of
the experiment. They indicated their choices using a four-point scale
[Strong Yes (SY), Yes (Y), No (N), Strong No (SN); left–right
ordering randomized across participants], which allowed us to
measure simultaneously their decisions and the strength of their
preferences. Participants cared about their decisions because they
knew that they would have to stay in the lab for 20 min at the end of
the experiment, and that the only thing that they would be allowed to
eat would be based on their decisions. Specifically, one trial was
randomly selected and participants were required to eat that food item
if their response was SY or Y, and were not allowed to eat it otherwise.
The structure of the decision task was similar to the ratings task

(Fig. 1). The only differences were as follows: (i) the initial ‘viewing
period’ of the foods now lasted either 1 s (Short condition) or 4 s
(Long condition); (ii) participants had to indicate their decision within
1 s of the beginning of the response period or the trial aborted; and
(iii) the intertrial intervals were drawn uniformly from 1 to 6 s. To
maintain the spacing across trials, the unused fraction of the response
period was added to the intertrial interval. Stimuli were divided
between the Short and Long conditions based on each participant’s
liking ratings in the behavioral session, to equate the distribution of

Viewing Response Confirmation

1 s OR 4 s < 1 s 1 s

ITI

1–6 s
Short Long

+ +

Fig. 1. Scanner choice task. On each trial, a color image of a food item appeared surrounded by a white box for either 1 s (Short condition) or 4 s (Long condition).
During this time participants were not allowed to enter a response. Afterwards the white box disappeared and participants had up to 1 s to enter their choice on a 4-
point scale [Strong Yes (SY), Yes (Y), No (N) or Strong No (SN)]. Immediately after the response, a 1-s confirmation screen appeared with a green fixation cross.
Trials were separated by an intertrial interval (ITI) of 1–6 s random duration.
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Liking ratings across conditions. Conditions were blocked (25 trials
per block), and block order was randomized subject to the constraint
that there were two blocks of each type (Short; Long) during each
functional scan. Blocks were preceded with an instruction cue
indicating the duration of the viewing period in the upcoming block
of trials (shown for 5 s, followed by a 1-s fixation cross) informing
participants about the upcoming condition. There were 200 trials in
each condition (400 trials total; eight blocks of each trial type, 16
blocks total). See the Supporting Information for details on how foods
were distributed between conditions.

fMRI – data collection

Scanning was performed at the Caltech Brain Imaging Center with a
Siemens 3T TIM-Trio full body scanner and a Siemens 32-channel
phased array head coil. High-resolution anatomical images were
acquired using a T1-weighted protocol (FOV, 256; 176 slices,
1 · 1 · 1 mm). Functional imaging used a gradient echo EPI
sequence (TR, 2530 ms; TE, 30 ms; FOV, 192; anterior-to-posterior
phase encoding, ascending slice acquisition), acquiring four functional
runs of 334 volumes, each with 40 oblique axial slices aligned 30� off
the AC–PC plane (to improve signal in the orbitofrontal cortex;
Deichmann et al., 2003), 3-mm isometric voxels and a 0.3-mm
between-slice gap.

fMRI – preprocessing

Two volumes were discarded before the beginning of data collection
in each run to allow for equilibration of the magnetic field. Data were
preprocessed with SPM8 software (Statistical Parametric Mapping 8,
Wellcome Trust Center for Neuroimaging; http://www.fil.ion.ucl.
ac.uk/spm/), including slice-time correction, realignment (motion
correction) and spatial smoothing (isotropic 6-mm FWHM Gaussian
kernel). Functional runs were coregistered and normalized to the
standard Montreal Neurological Institute EPI template. Data were
high-pass filtered prior to analysis (cutoff, 128 s).

fMRI – whole-brain analyses

Analysis was performed with SPM8 and custom MATLAB scripts
(Mathworks, Natick, MA, USA). Individual level whole-brain general
linear models (GLMs) with first order autoregression (AR(1)) and
SPM8’s standard hemodynamic response function were estimated in
three steps. First, we estimated the model separately for each
individual. Second, we calculated contrast statistics at the individual
level. Third, we computed second-level statistics by carrying out one-
sample t-tests on the single-subject contrast coefficients.

GLM 1

This model contained the following three regressors of interest: R1,
regressor for initial stimulus presentation, in the form of a boxcar
function that ran from image onset to response, pooling across both
the Short and Long conditions; R2, Decision Value regressor, created
by modulating R1 by the subject’s decision value on each trial (SN,
)1.5; N, )0.5; Y, +0.5, SY, +1.5); and R3, Response Time regressor,
in the form of a stick function at the time of the response.

GLM 2

The second GLM consisted of the following regressors of interest: R1,
regressor for Short trials only, in the form of a boxcar from image

onset to response; R2, Tastiness rating regressor for Short trials,
created by modulating R1 by the Tastiness rating (Very Bad, )2 to
Very Good, +2); R3, Healthiness rating regressor for Short trials,
created by modulating R1 by the Healthiness rating (Very Unhealthy,
)2 to Very Healthy, +2); R4, regressor for Long trials only, in the
form of a boxcar from image onset to response; R5, Tastiness rating
modulated regressor for Long trials; R6, Healthiness rating modulated
regressor for Long trials; R7, Indicator for response in Short trials; and
R8, Indicator for response in Long trials.
In addition, both GLMs also included the following nuisance

regressors – estimates of motion from preprocessing and, separately
for each condition, boxcars for the pre-block instruction cues (5 s),
transient predictors for item presentation when participants failed to
respond, transient predictors for item presentation when participants
responded too early, and transient predictors for the response itself
when participants responded too early.
In our whole-brain analysis we localize activity for the contrasts of

interest using the liberal but common statistical threshold P < 0.001
uncorrected with a five contiguous voxel extent threshold. We chose
this criterion to give the best chance of identifying the desired regions
of interest (ROIs) for further investigation.

fMRI – ROI definition

Most analyses in the paper examined the patterns of activation in two
pre-specified ROIs: the VMPFC and left DLPFC regions exhibiting
blood oxygenation level-dependent (BOLD) responses modulated by
DVs (R2) in GLM 1. The resulting functionally specified ROIs are
depicted in Fig. 2. The VMPFC ROI consisted of all voxels significant
in this contrast at P < 0.00001, uncorrected (78 voxels). This stringent
threshold was necessary to prevent the inclusion of voxels from other
distinct areas of the brain (e.g. ventral striatum, cingulate). The DLPFC
ROI consisted of all voxels significant at P < 0.001, uncorrected
(seven voxels). After identifying ROIs in whole-brain analyses, the
responses within these regions were investigated in two ways: (i) raw
BOLD data was extracted from these ROIs for deconvolved (neural
signal) finite impulse response (FIR) analyses, and (ii) mean param-
eters within the ROIs from the whole-brain GLM 2 (Taste and Health)
were extracted for use in conventional BOLD analyses.

fMRI – neural estimate analyses

Although standard approaches often present analyses based on BOLD
responses, hemodynamic responses are substantially delayed and
prolonged relative to the neural signals that generate them. This means
that analyses sensitive to small differences in timing (�1–3 s) can
often be difficult to visualize or interpret using these approaches. To
better address questions specific to the timing of value signals, we
therefore turned to deconvolution methods designed to extract the
‘neural estimate’, i.e. an estimated neural response (Gitelman et al.,
2003). This deconvolution procedure offers the additional benefit of
using a constrained set of hemodynamic response function (HRF)
parameters rather than a single fixed HRF. This accounts for some of
the differences that may arise between regions, lowering the risk of
systematic bias and increasing our ability to compare the neural
estimates across regions (see Supporting Information for similar
analyses performed on the non-deconvolved BOLD responses).
This analysis proceeded in the following steps.
First, for every voxel within an ROI, the raw BOLD signal at each

TR was extracted, mean-corrected and adjusted for motion using
standard SPM tools.
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Second, the resulting timecourses for each individual’s extracted
data were then subjected to singular value decomposition, and the first
eigenvariate (i.e. the first principal component of the raw time series
from all voxels within the ROI) was used as the index of the regional
response (Friston et al., 1996; O’Reilly et al., 2010; Mars et al.,
2011a,b). This technique captures the signal representing the greatest
proportion of variance within the ROI (i.e. that which is most coherent
across the voxels), making it less susceptible to noise from any given
voxel compared to a simple average (Friston et al., 1996; Gitelman
et al., 2003).
Third, a neural estimate was constructed by deconvolving the

BOLD timecourse with the formula for SPM8’s canonical HRF using
standard SPM scripts employing a parametric empirical Bayes
formulation (Gitelman et al., 2003). This deconvolution entailed
assumptions common to all analyses using HRFs (including classic
whole-brain GLMs), such as assumptions of HRF linearity, shape and
consistency across regions. As in any analyses requiring these or
similar assumptions, any inferences are predicated on the accuracy of
those assumptions.
Fourth, the neural estimate resulting from this deconvolution was

linearly interpolated (up-sampled) to a resolution of 1 ⁄ 16th of a TR
(0.158 s). This fine temporal resolution is preferred in order to reduce
the temporal blurring associated with rounding event onset times to
the nearest data timepoint in the finite impulse response analyses
described below.
Finally, we estimated FIR models on these data for each individual,

ROI and scan session. In an FIR model, events of interest are modeled
with multiple regressors, each estimating the signal at a single given
timepoint relative to event onset. Note that because this technique
estimates the signal at discrete timepoints, regressors must be similarly
aligned, incurring temporal blurring proportional to the timecourse
resolution. Events of interest were modeled with 19 sequential non-
overlapping transient predictors in the Short (1 s) condition (covering
the 3 s from the onset of the image to the end of the trial), and 38
transient predictors in the Long (4 s) condition (to cover the 6 s from
image onset to the end of the trial). The resulting models included

separate regressors for each response type (SY, Y, N and SN) and a
session constant. After estimation, parameter estimates were averaged
across the four scan sessions for each participant. Because the
hemodynamic response was deconvolved from the ROI data, no
hemodynamic lag was expected in the neural estimates. One
participant was excluded from the FIR analyses because they never
provided a SN response.
We report three different types of FIR analyses. First, we examine

the instantaneous differences in the FIR estimates between SY and SN
trials. This provides a measure of the instantaneous DV signal (i.e., the
difference score increases as the neural responses associated with DV
signals become more discriminating between SY and SN trials).
Second, because computational models of choice behavior suggest
that decisions result from the accumulation of information over time
(Kiani et al., 2008; Ratcliff & McKoon, 2008; Kiani & Shadlen,
2009), we also looked at differences in the cumulative value signal. In
particular, for any time t, let v(t) be the SY – SN difference score at
that time. The cumulative value difference at time T is then given by
the sum of all v(t) from t = 0 to t = T. This analysis allows us to test
whether there are differences across conditions or regions in how the
DV signals accumulate over time. Third, we examined differences in
the timing of valuation by (i) computing the time of the peak value
computation (t at which SY – SNt = max [SY – SN]), and (ii)
computing the number of timepoints we had to shift the Short
SY – SN curve to best match the Long SY – SN curve, by
minimizing the sum of the squared differences at the overlapping
points (intuitively, the point at which the two curves were the most
similar).

fMRI – BOLD ROI analyses

Using the VMPFC and DLPFC ROIs, we also conducted a standard
analysis based on the BOLD signal. Using GLM 2, we extracted
average beta coefficients for the weighting of Tastiness and Health-
iness in the Short and Long conditions from each ROI for each
subject, and subjected them to a detailed analysis examining the

A B C

Fig. 2. Whole-brain localization of DV signals and ROIs. (A) Areas in which BOLD responses during the initial period of stimulus presentation were positively
modulated by decision values, regardless of condition (P < 0.001 uncorrected, cluster threshold = 5; see GLM 1). Hot colors indicate positive contrast values, cold
colors indicate negative contrast values. The circles identify the VMPFC (top) and DLPFC (bottom) regions correlated with decision value. (B) ROIs used in further
analyses – VMPFC, yellow; DLPFC, red. (C) Relationships between the ROIs and areas in VMPFC and DLPFC that have been shown elsewhere to correlate with
DVs at the time of choice – Plassmann et al. (2010), left DLPFC, purple; Plassmann et al. (2007), right DLPFC, blue; McClure et al. (2004), VMPFC, cyan; and
Hare et al. (2009), VMPFC, green.
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influence of decision time on the neural representation of each
attribute.

Results

This section is organized as follows. First, we describe the results of a
whole-brain analysis of the BOLD data designed to identify areas of
VMPFC and DLPFC in which BOLD responses were correlated with
DVs, for both experimental conditions. The results of this analysis
were used to define two functional ROIs, one for VMPFC and one for
DLPFC, which were found to be similar to those identified in previous
studies. Second, we carried out various ROI-based analyses of the
properties of the DV signals encoded in these two areas; these
analyses were used to systematically address the four questions posed
in the introduction.

Whole-brain analysis – correlation with DVs during the
evaluation period

We estimated a general linear model of brain responses in which
activity during the entire evaluation period (i.e., from stimulus onset to
response prompt, 1 s in Short condition and 4 s in Long condition)
was modulated by DVs (see GLM 1 in Materials and Methods for
details). DVs were measured using the four-point response scale (SN,
N, Y, SY). Figure 2A depicts regions in which the BOLD responses
were positively correlated with DVs which, as expected, included
areas of VMPFC and left DLPFC (see Table S1 for full list of
activations).

These results were used to functionally define the ROIs in VMPFC
and DLPFC, depicted in Fig. 2B, that were used in all subsequent
analyses. Note that their location aligned well with previous reports
(Fig. 2C; McClure et al., 2004; Plassmann et al., 2007; Hare et al.,
2008; Plassmann et al., 2010) and that their definition was statistically
independent of tests below that compare the two conditions, as
GLM 1 imposes a common estimate for the DV regressor for both
conditions.

Question 1 – does available decision time influence the timing of
DV signals?

Our primary research question concerned whether the amount of
available decision time influenced the timing of decision value
computations in the brain (e.g., changing the onset, duration or
trajectory, as compared to the null hypothesis that time has no
influence on these computations). Evidence for such changes would
help to explain behavioral findings that time pressure can lead to less
accurate choices (Milosavljevic et al., 2010, 2011) and might
complement evidence from the perceptual literature that evidence
accumulation begins immediately but continues only until a decision
threshold is crossed, even if more time and information are available
(Kiani et al., 2008; Kiani & Shadlen, 2009). This evidence suggests
that we should observe changes in the timing of subjective decision
value computation as a function of available decision time, although
the precise nature of these changes could take several forms, three of
which we test below.

We tested this hypothesis using extracted neural estimates of value-
related activity in VMPFC and DLPFC and FIR analyses that estimate
neural responses in each ROI, time bin and condition separately for
each response type (SY, Y, N, and SN). This combination of methods
allows us to compare signals, without lag, across regions because it
does not assume the same shape for the hemodynamic response in

each area (see Materials and Methods for full details and justification).
For analyses reported in the paper, we defined an index of the
instantaneous DV signal in each time bin by the difference between
the SY and SN responses (Fig. 3A and B; see Fig. S1 for separate SY,
Y, N and SN responses). The larger the SY – SN score (i.e. the more
strongly items were differentiated based on value), the more value
computation was taking place. Intuitively, an SY – SN difference
score of zero at a given moment indicates no value computation at that
time. As the SY – SN difference score becomes significantly different
from zero, it indicates a stronger and more consistent representation of
stimulus values.
We first tested for differences in onset of DV computations in Short

vs. Long trials. We found that in both ROIs the onset of value
computation appeared to be immediate and of identical magnitude. In
other words, the magnitude of the response during the first second was
significantly above zero at all timepoints, and did not differ between
Short and Long trials in either region (all timepoints n.s.).
We next compared differences in the duration of DV computation.

This comparison revealed significantly longer DV computation in the
Long condition, in both regions. In other words, whereas in the Short
condition the DV signal became statistically indistinguishable from
zero �2 s after stimulus onset (DLPFC timepoint 15, 2.37 s; VMPFC
timepoint 12, 1.89 s), in the Long condition the DV signal was
present for nearly twice as long (DLPFC timepoint 26, 4.11 s;
VMPFC timepoint 25, 3.95 s). Note that although the termination of
computation aligned to the end of the viewing window in the Long
condition, it extended a full second past this point in the Short
condition. To test these observations of duration differences more
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Fig. 3. Instantaneous neural estimate analyses. (A) Estimate of the difference
in activity levels in the DLPFC ROI between trials with SY and SN responses,
for each time bin and condition. Gray and black bars at the bottom of the figure
indicate the length of time the foods were initially shown in each condition.
Gray and black symbols indicate that SY – SN was significantly different from
zero at *P < 0.05 and marginally different at +P < 0.1, based on a one-sample
t-test computed against zero. (B) Analogous estimates for the VMPFC ROI.
Black carets indicate a marginal difference between the estimates for the two
conditions (�P < 0.1, paired t-test). Error bars are SEM calculated across
participants. See Materials and Methods and Results sections for details on how
the measures are computed; y-axes are in arbitrary units (a.u.).
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formally, we defined a measure of the cumulative value computation
during the full viewing window. For any time bin T, the measure was
constructed for each subject by adding up the instantaneous estimates
reported in Fig. 3 from all bins between 0 and T, which is basically a
measure of the area under the instantaneous curve (Fig. 4A; see
Materials and Methods for full details). Larger cumulative value scores
indicate a longer duration of value computation. To compare conditions
within each ROI, we computed the value of the cumulative signal at the
end of the stimulus presentation period (1 s for Short, 4 s for Long). In
both regions, the mean cumulative signal at the end of the period was
larger in the Long condition (VMPFC, t20 = 3.9, P = 0.0009; DLPFC,
t20 = 2.2, P = 0.04), demonstrating that longer viewing windows
resulted in a significantly longer duration of value integration.
Taken together, this set of results indicates the following robust

properties of the DV signals in VMPFC and DLPFC. First, the DV
signals were indistinguishable across conditions for the first second of
computation, when the stimulus was present in both cases. Second,
computation began to differ after that – the signal ramped down in the
Short condition, but remained above zero for significantly longer in
the long condition.

Question 2 – does extra decision time result in more accurate
choices?

The computational models of choice that state that decision values
must be computed and compared to make a choice suggest that the
additional computation time we observed in VMPFC and DLPFC
should result in more accurate choices. To determine whether this was
the case, we tested for differences either in average DVs or in the

relationship between DVs and the temporally unconstrained Liking
ratings (mean ± SEM, 0.12 ± 0.08) made during Session 1. Differ-
ences in the averages, or lower explained variance in the Short vs.
Long conditions, would indicate reduced consistency or accuracy in
choices. However, we observed no evidence of changes in either
measure. The mean decision values and the variance explained by
Liking ratings did not differ across conditions (mean DV Short,
)0.04 ± 0.06; mean DV Long, )0.03 ± 0.06; R2

Short = 0.57,
R2
Long = 0.56; see Table 1). To ensure that lack of differences did

not result from extra time taken by participants during the response
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Fig. 4. Cumulative neural estimate analyses. (A) Estimate of the cumulative difference in activity levels in the DLPFC ROI between trials with SY and SN
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Table 1. Mixed effect estimates for a linear regression of choices on liking
ratings.

Mean estimated coefficients

Constant Liking rating R2

Short )0.111
(P = 0.048)

0.481
(P = 1.6 · 10)15)

0.57

Long )0.107
(P = 0.046)

0.494
(P = 5.4 · 10)15)

0.56

Short vs. Long* P = 0.81 P = 0.36 P = 0.80

For each individual and condition, the decisions made in the scanner
(represented by their DVs; see Methods) were regressed against the liking
ratings provided in the first experimental session. The table reports the mean
estimated coefficients of the regression, as well as P-values for two-tailed
groupwise one-sample t-tests against the null hypothesis that the mean
estimated coefficient is zero (N = 22).
*Two-tailed paired sample t-test.
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period we also examined reaction times. If decisions are not
computed fully within 1 s, participants may use more of the response
period to achieve greater accuracy. However, participants were
slightly faster in the Short condition than the Long condition (average
participant median ± SE reaction times – in Short, 345 ms ± 12 ms;
in Long, 376 ± 8 ms; t21 = 3.56, P = 0.002). Explanations for this
small but counterintuitive difference could be the release of response
inhibition in the Long condition or the greater predictability of
response onset in the Short condition. Future research might seek to
examine the source of this discrepancy and its consequences for the
control of valuation. [We also observed that extreme (SY and SN)
responses were faster than weak (Yes and No) responses – average
participant median ± SE reaction times for extreme responses,
351 ± 9 ms; for weak responses, 370 ± 9 ms; t21 = 3.9, P =
0.0008), but this effect did not differ by condition.] Regardless,
these results suggest that choice accuracy was identical in the Short
and Long conditions, and at ceiling. Despite evidence of neural
differences, a computation time of 1 s was enough to saturate the
value estimates driving behavior.

Question 3 – do decision value signals evolve differently over
time in VMPFC vs. DLPFC?

Although we observed some differences in the temporal course of
DV signals in both VMPFC and DLPFC, it is also possible that there
are differences between these two regions specifically in their
evolution over time. This hypothesis was motivated by the informal
observation that presentation times of < 2 s were sufficient to
reliably engage VMPFC, but such short times led to inconsistent
findings of DLPFC (Kim et al., 2008; Litt et al., 2010; Harris et al.,
2011), compared to a presentation time of 4 s which tended to
engage both (McClure et al., 2004; Plassmann et al., 2007; Hare
et al., 2008, 2009).

We tested the hypothesis that these regions display differences in the
timing of their value computation signals (which could explain these
observations) against the null hypothesis that they proceed identically
and in parallel. To do so, we performed two closely related analyses: (i)
identification of the peak timepoint of individuals’ SY – SN curves in
each region of interest and condition; and (ii) computing the best fit shift
for each region of the Short SY – SN curve to match the Long curve
(intuitively, the point at which the two curves were the most similar).

The identification of peaks in the SY – SN score serve as a crude
measure of the relative timing of a response. This analysis indicated no
significant difference in the timing of the peaks in the Short condition
(DLPFC peak, 9.8; VMPFC peak, 8.8 timepoints). However, in the
Long condition, the DLPFC (peak = 21.7) peaked significantly later
than the VMPFC (peak = 13.4 timepoints; t(20) = 2.7, P = 0.01).

To identify the shift, we minimized the sum of squared differences
between the overlapping points of the Short and Long curves for each
region. This yielded a shift of anywhere from zero (no shift) to 19
timepoints (3 s), which averaged 11.8 timepoints (1.87 s) in the
DLPFC and 8.5 timepoints (1.34 s) in the VMPFC. This corroborates
the peak analysis, suggesting that in the Long condition the DLPFC
response was shifted later compared to VMPFC, relative to the
respective original responses in the 1-s condition. However, estimates
of this shift were highly non-normal, bounded, and quantized,
violating common fundamental assumptions of parametric tests, for
which reason we limit these results to descriptive statistics.

In concert, these findings suggest subtle but significant differences
in the timing of computations performed in VMPFC and DLPFC.
Given this, we turned next to an investigation of differences in the
content of those value signals.

Question 4 – are there differences in the information that is
integrated to compute decision value signals in VMPFC and
DLPFC?

Computational models posit that decision values are the result of the
accumulation and integration of multiple sources of information (e.g.
different stimulus attributes; Ratcliff & McKoon, 2008). Recent work
suggests that value computations in VMPFCmay be biased toward low-
level primary attributes of a stimulus, such as Tastiness, and that
DLPFC may be required to incorporate more abstract attributes, such as
Healthiness, into decisions (McClure et al., 2004; Hare et al., 2009).
A natural hypothesis based on the above observations is that the
differences we observed in timingmay result from difference in content.
Before examining neural differences, we asked whether computa-

tion time affects the determinants of value signals driving decisions as
observed behaviorally. We regressed each participant’s choices (DVs;
see Materials and Methods) on their ratings of Tastiness and
Healthiness of those same items, separately for the Short condition
and the Long condition. If these attributes differentially predict choice
as a function of time we should see differences in the parameters
across the two conditions. However, we observed little evidence of
such changes. Across participants, mean ± SEM for ratings of the
food items were 0.24 ± 0.08 for Taste and )0.44 ± 0.06 for Health. In
both conditions, Tastiness was the primary driver of choice
(bShort = 0.474, bLong = 0.491; both P < 0.01), while Healthiness
played a much smaller role (bShort = 0.033, bLong = 0.056). There
were no significant differences between the Short and Long conditions
for any of the parameters of interest (Table 2), although Healthiness
did play a marginally significant role in choices made in the Long
condition (P = 0.063) but not in the Short condition (P = 0.18).
Individual-level parameter significance tests also revealed no consis-
tent patterns across conditions (not shown). In summary, there was no
strong behavioral evidence that different attributes of the stimuli were
driving decision values in the Short vs. Long conditions.
Although we did not observe differences in the behavioral

weighting of these two properties, it is still possible that different
regions may differentially represent these components of value, or that
such a representation interacts with the available decision time. We
thus tested for neural differences in the representation of Tastiness and
Healthiness in VMPFC and DLPFC by condition. To do this, we ran a
second GLM regressing Tastiness and Healthiness against the BOLD
response separately in the Short and Long conditions (see Materials

Table 2. Mixed effect estimates for a linear regression of choices on health
and taste ratings.

Mean estimated coefficients

Constant Health rating Taste rating R2

Short )0.158
(P = 0.0016)

0.033
(P = 0.18)

0.474
(P = 2.7 · 10)12)

0.54

Long )0.155
(P = 0.0012)

0.056
(P = 0.063)

0.491
(P = 6.8 · 10)12)

0.56

Short vs. Long* P = 0.86 P = 0.11 P = 0.23 P = 0.42

For each individual and condition, the decisions made in the scanner
(represented by DVs; see Methods) were regressed against the Taste and Health
ratings provided in the first experimental session. The table reports the mean
estimated coefficients of the regression, as well as P-values for two-tailed
groupwise one-sample t-tests against the null hypothesis that the mean
estimated coefficient is zero (N = 22).
*Two-tailed paired sample t-test.
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and Methods, GLM 2). We then extracted parameter estimates for the
VMPFC and DLPFC for each attribute and condition and subjected
them to a 2 (Region: DLPFC & VMPFC) · 2 (Attribute: Health &
Taste) · 2 (Condition: Short & Long) repeated-measures anova. This
analysis indicated a strong main effect of Attribute (F1,21 = 22.4,
P = 0.0001; Taste > Health), a weak main effect of Condition
(F1,21 = 3.5, P = 0.08; Short > Long), and a weak Condition · Attri-
bute interaction (F1,21 = 4.1, P = 0.06), driven by the decrease in
responses to Taste in the Long relative to the Short condition in both
regions (DLPFC t21 = 2.1, P = 0.05; VMPFC t21 = 2.2, P = 0.04),
with no similar decrease in responses to Health (all P > 0.35; Fig. 5).
Note that conclusions based on these differences are subject to the
caveat that the canonical hemodynamic response, as implemented in
the GLM, fits the brain activity equally well in both conditions.
Taken together, these results suggest that there are few if any

behavioral or neural differences in the attributes driving the compu-
tation of decision value.
The combination of differences in timing but not content in VMPFC

and DLPFC value signals could result from a sharing of information
between the two. This suggests two complementary hypotheses:
(i) value signals in the two regions should be correlated; and (ii)
greater computation times should allow for greater convergence in

their signals, leading to stronger correlations in the Long vs. Short
condition. To test these hypotheses, we calculated the correlation
between the total accumulated DV signal in these regions across
participants. In both Short and Long conditions, these measures were
highly correlated (Short, r19 = 0.53, P = 0.01; Long, r19 = 0.78,
P = 0.00004). Moreover, the correlation in the long condition was
marginally greater (one-tailed Fisher’s r-to-z, z = 1.37, P = 0.09;
Fig. 6). These results provide modest support for the sharing of value-
related information between these regions.

Discussion

In this study, we address four questions related to whether and how the
available computation time affects neural decision value signals and
behavioral responses. We found that, while the available computation
time did not change choices or the attributes driving them, decision
value signals in the DLPFC and VMPFC showed marked intra- and
interregional differences, providing novel constraints on our under-
standing of decision values.
Previous studies involving different species and techniques have

found that activity in VMPFC and DLPFC reflects the computation of
DV signals (Rangel & Hare, 2010; Wallis & Kennerley, 2010; Padoa-
Schioppa, 2011), which are then compared to make a choice (Basten
et al., 2010; Milosavljevic et al., 2010; Hare et al., 2011b). Activity in
the same regions also correlated with DVs in the current study, in both
the Short and the Long conditions. This provides additional support in
favor of the hypothesis that these two areas are central to the computation
of DVs and hence choices. However, the main goal of the study was to
extend this literature by characterizing several unknownproperties of the
DV signals encoded in these two regions, including their relationship to
choices, and examine how signals in these areas differ and interact. Our
findings support the following conclusions.

Finding 1 – the temporal profile of DV signals depended on the
available decision time

In particular, during the first second of the trial, the signals were
indistinguishable across the Short and Long conditions but began to
diverge thereafter. This suggests that these value computations were
sensitive to the presence of the stimulus and ⁄ or the onset of the
response window. In particular, in the Short condition, DV signals in
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both regions began ramping down after the viewing window ended
and a response was required, but remained high in the Long condition
through its entire 4-s length, only ramping down at the end.

This finding provides useful insights about the nature of the DV
computations. First, it shows that in our task the computation of DVs
expands to fit the available computation time (and in fact may extend
beyond this point in the Short condition). This stands in contrast to
neurophysiological studieswhich suggest that evidence accumulation in
parietal neurons during perceptual tasks continues only until a decision
threshold is crossed and no further, even if there is more computation
time available (Kiani et al., 2008; Kiani & Shadlen, 2009). As there are
many differences between the two tasks, an important question for
future work will be to characterize what determines the duration of basic
perceptual and valuation computations, across a wide variety of tasks.
Second, although the start and end of DV computation aligns well with
the presence of the stimulus, suggesting that valuation is strictly
stimulus-locked, we think our data suggest amore complex relationship.
Specifically, there is evidence that these computations may not be
strictly stimulus-locked as DV computation in the Short condition
continues after, and in the Long condition stops before, the response has
been entered and the stimulus is removed from the screen.

It is important to acknowledge that there may be alternative
explanations for these response profiles. For example, neural adaptation
could account for some of the differences across the Short and Long
conditions; alternatively, the observed value signals may have repre-
sented the maintenance of a stored value signal and not its ongoing
computation. The overwhelming evidence that these regions engage in
active and consequential DV computation argues against these
interpretations, but future work will be necessary to fully address these
alternatives. For example, to test whether adaptation explains the
patterns of the observed neural estimates, future studies could vary the
length of the viewing window, repeat items a variable number of times,
prime item presentations with other objects or vary the stimuli to be
simpler or more complex. Observing how computation might change in
these cases could shed light on these possible explanations.

Finding 2 – the Long condition resulted in greater cumulative
DV signals in both ROIs

This larger cumulative signal could be interpreted to indicate a
stronger representation of value, which could have implications for the
quality and reliability of downstream processes. Although the increase
in available decision time did not lead to improvements in choice
quality in this study, our results are consistent with previous studies of
speed–accuracy tradeoffs in valuation (Ratcliff & McKoon, 2008;
Milosavljevic et al., 2010, 2011).

This finding also provides additional insights into the nature of the
valuation process. First, it shows that the DVs are not computed using
a computationally efficient process. Specifically, we found that they
continued after the response in the Short condition, and that choices
were no different across conditions despite an almost five-fold
difference in the total amount of computation. This seems highly
inefficient as computation is metabolically costly (Kandel et al.,
2000), and in the above cases either cannot or did not affect choices. It
is possible the additional computation would have effects on other
aspects of behavior we did not observe (e.g. learning, changes over
time etc.), but this remains a question for future research.

This inefficiency also suggests that DV signals need only be of
sufficient quality for consistent accurate choice (for example, to average
out the noise). This is consistent with a growing number of studies finding
that values are compared tomake a choice using algorithms that resemble
a Drift-Diffusion Model (Gold & Shadlen, 2002; Bogacz et al., 2006;

Basten et al., 2010; Krajbich et al., 2010; Milosavljevic et al., 2010;
Hare et al., 2011b). In these models the comparison process terminates
when the cumulative DV signal crosses a pre-specified barrier. As a
consequence, further improvements in the signal beyond that point in
time do not affect choices. Participants’ choices in our study were highly
accurate in both conditions, which suggests that even in the Short
condition the amount of signal computed was sufficient to cross the
associated barriers. This could explain why the additional calculation of
the DVs in the Long condition did not improve choice quality.
How can we reconcile our findings of consistently accurate choices

with evidence that neural estimates of value signals extend beyond the
effective or necessary amount of time? Recent research suggests that
value signals may be used after choice for other reasons, including
online response adjustment or inter-trial learning, as proposed
elsewhere (Resulaj et al., 2009; Ding & Gold, 2011).

Finding 3 – in the Long condition, DV signals of equivalent
magnitude appeared later in DLPFC than in VMPFC

A similar difference could not be found for the Short condition,
though a careful look at Fig. 3 suggests that the null results for the
Short condition might be the product of limited statistical power.
Nevertheless, this finding is consistent with previous studies of the DV
signals in monkeys (Wallis & Miller, 2003), which also found that the
DLPFC signal lagged the one in VMPFC. The authors’ interpretation
of the delay was that the VMPFC value signals were subsequently
passed to DLPFC to influence the selection of motor responses. This
interpretation is inconsistent with recent fMRI studies of the network
involved in making choices (Basten et al., 2010; Hare et al., 2011b),
which find that the DLPFC plays a role in controlling the comparison
process, but that its activity does not reflect the computation of DVs.
Regardless of the precise computational relationship between the two
regions, we demonstrate that they do not have the same temporal
profile and, specifically, that computation in the DLPFC is shifted later
relative to the VMPFC. Such a temporal difference could arise, for
example, if the two areas used different inputs to compute the DVs,
which were themselves computed with different latencies, or if value
information was shared between these regions, as mentioned above.

Finding 4 – VMPFC and DLPFC were equally sensitive to
Tastiness and Healthiness of foods

Contrary to hypotheses that these regions would represent different
attributes, VMPFC and DLPFC were equally sensitive to Tastiness
and Healthiness of foods, two attributes that can be used to compute
DVs (Basten et al., 2010; Rangel & Hare, 2010). Others have argued
that VMPFC signals may reflect the integration of ‘basic attributes’
(e.g., taste) whereas DLPFC may reflect the integration of ‘abstract
attributes’ (e.g., health) (McClure et al., 2004; Hare et al., 2011a).
However, an important caveat to conclusions in the current study was
the weak behavioral relationship we observed between Healthiness
and DVs. It is possible that if participants had been more motivated to
consider Healthiness in their choices (e.g. were dieting) we would
have observed differences within and between the DLPFC and
VMPFC signals. Regardless, our findings are not fully consistent with
this view, as the relative weight of Tastiness, which was tightly linked
to decision value, was represented similarly in the two areas. The
results also show that the ability of DLPFC to consider more abstract
attributes, such as health, does not necessarily increase with additional
computational time. Future research will be needed to examine how
healthiness, and other attributes not considered here, may play a role
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in the computation of decision value and may interact with longer
amounts of decision time.
By controlling the amount of time in which a very simple choice

must be reached, this study provides a lower bound on the
consequences of altering the temporal constraints of valuation. Value
circuitry shifts computation to accommodate the time given. That it
did so was not a foregone conclusion. This suggests both a high
degree of neural flexibility at the cost of efficiency and also limited
exploitation of the available time. Value computation may be basic, or
even primitive, but it is also a remarkably flexible process, sensitive to
both external constraints and internal control.
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