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Abstract

Animals learn to predict external contingencies from experience through a process of
conditioning. A natural mechanism for conditioning is stimulus substitution, whereby
the neuronal response to the CS becomes increasingly identical to that of the US.
We propose a recurrent neural network model of stimulus substitution which lever-
ages two forms of inductive bias pervasive in the cortex: representational inductive
bias in the form of mixed stimulus representations, and architectural inductive bias in
the form of two-compartment pyramidal neurons that have been shown to serve as

a fundamental unit of cortical associative learning. The properties of these neurons
allow for a biologically plausible learning rule that implements stimulus substitution,
utilizing only information available locally at the synapses. We show that the model
generates a wide array of conditioning phenomena, and can learn large numbers of
associations with an amount of training commensurate with animal experiments, with-
out relying on parameter fine-tuning for each individual experimental task. In contrast,
we show that commonly used Hebbian rules fail to learn generic stimulus-stimulus
associations with mixed selectivity, and require task-specific parameter fine-tuning.
Our framework highlights the importance of multi-compartment neuronal processing
in the cortex, and showcases how it might confer cortical animals the evolutionary
edge.

Author summary

Animals learn to anticipate important events by forming associations between neu-
tral cues (like a bell) and meaningful outcomes (like food). This process, known as
conditioning, is fundamental to survival. Traditional, Hebbian models of synaptic
plasticity (“fire together-wire together”) are able to recapitulate these behavioral
phenomena at the neuronal level, yet they rely on the simplifying assumption that
individual neuronal populations are responsible for a specific association. This
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assumption does not hold under the current established view of mixed represen-
tations, particularly in the cerebral cortex. To address this limitation, we develop a
biologically plausible synaptic plasticity model that implements predictive learning
within single pyramidal neurons in the cortex. Our model is able to account for a
host of conditioning phenomena, even when individual neurons respond to multi-
ple stimuli. Compared to Hebbian rules, we show that our learning rule is robust to
hyperparameter and experimental design changes, as it utilizes biologically plausi-
ble self-supervision. Overall, our work helps explain how the structure of pyramidal
neurons in the mammalian cortex may allow cortical animals to more efficiently
pack associations in the cortex, leading to optimized cognition under biologically
imposed constraints.

Introduction

The ability to forecast important events is necessary for effective behavior. Animals
are equipped with innate reflexes to tackle common threats and to exploit opportu-
nities in their environment. However, given the complex and changing nature of the
world, animals also need to acquire new reflexes by learning from experience. This
process involves the association or conditioning of an initially neutral stimulus (con-
ditioned stimulus, CS) with another stimulus intrinsically related to primary reward or
punishment (unconditioned stimulus, US). If learning is successful, the CS can then
induce the same behavioral response as the US. Initially proposed by Pavlov, this
type of learning is known as classical conditioning.

A potential mechanism for conditioning is stimulus substitution [1]. Under this
mechanism, the response of the relevant population of neurons to the CS becomes
increasingly identical to that generated by the US. After this, any downstream
processes that are normally triggered by the US are also triggered by the CS. Behav-
ioral evidence in favor of stimulus substitution comes from studies showing that ani-
mals display the same behavior to the CS as to the US, even when the behavior is
not appropriate (e.g. consummatory response towards a light that has been associ-
ated with food), and that the behavior is reinforcer dependent [1]. Furthermore, recent
experiments show that during conditioning the response of S1 pyramidal neurons
to the CS becomes increasingly similar to their response to the US, a phenomenon
the authors termed "learning induced neuronal identity switch”, and that this change
correlates with learning performance [2].

A basic goal in computational and cognitive neuroscience is to build plausible
models of neural network architectures capable of accounting for psychological phe-
nomena. Previous work has shown that three-factor Hebbian synaptic plasticity rules
accounts for a wide gamut of conditioning phenomena [3—6]. However, these mod-
els have some important limitations. First, stimulus substitution implies the ability to
associate any population activity pattern corresponding to a US with any arbitrary
activity pattern that corresponds to a CS, and, as shown here, these models fail at
performing this task in its most general form, i.e. under mixed selectivity where the
neurons that are activated by different patterns can be shared. Some use learning
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rules requiring storage of recent events at each synapse [5], while most assume that the tuning of neurons to stimuli is
demixed, allowing simple reward modulated spike-timing-dependent plasticity to establish the appropriate mappings [5,6].
These assumptions are inconsistent with the well-established fact that representations throughout the brain are high-
dimensional and mixed [7].

In this study we propose a recurrent neural network (RNN) model of stimulus substitution. Critically, the model learns
pattern-to-pattern associations using only biologically plausible local plasticity, and individual neurons are tuned to mul-
tiple behavioral stimuli, which gives rise to mixed representations of the CSs and USs. While subcortical [8] and even
single-neuron [9] mechanisms for conditioning exist, our model is focused on stimulus-stimulus learning in the cortex,
where the use of mixed stimulus representation allows learning a wide and flexible range of associations within the same
neuronal network, which confers an evolutionary edge.

To achieve this goal, we leverage two forms of biological inductive bias built into the cortex: first, representational induc-
tive bias in the form of mixed stimulus representations, that permit the efficient packing of multiple associations within the
same neuronal population. To combat the additional complexity introduced by mixed representations, which requires not
just the activation of the correct neurons but also the correct activity level, we leverage the second form of inductive bias:
architectural inductive bias in the form of two-compartment layer-5 pyramidal neurons which are prevalent in the cortex
[10].

We propose a RNN model of such two-compartment neurons. Recent work has shown that these neurons can learn
to be predictive of a reward [11], and suggests that they could serve as a fundamental unit of associative learning in the
cortex through a built-in cellular mechanism [12]. Hence, we refer to them as associative neurons. The term associative
here does not have a strictly Hebbian interpretation; rather it refers to the hetero-associative capacity of these neurons to
link together information originating from different streams [13], through a mechanism known as BAC firing [14]. The prop-
erties of these neurons allow for a biologically plausible learning rule that utilizes only information available locally at the
synapses, and that is capable of inducing self-supervised predictive plasticity [15,16], which allows neurons to respond
with the same firing rate to the CS as they would to the US, i.e. achieve stimulus substitution. Similar learning rules have
been used to bridge the gap between bio-plausible learning and deep learning algorithms, in feedforward [17] and recur-
rent architectures alike [18], and share a common theme of shaping synaptic connectivity to match a certain activity pat-
tern [19]. Our learning rule is very similar to the one in [20], with the difference that we are not directly modeling plateau
potentials.

We show that the model generates a wide array of conditioning phenomena, including delay conditioning, trace con-
ditioning, extinction, blocking, overshadowing, saliency effects, overexpectation, contingency effects and faster reacqui-
sition of previous learnt associations. Furthermore, it can learn large numbers of CS-US associations with an amount of
training commensurate with animal experiments, without relying on parameter fine-tuning for each individual experimen-
tal task. In contrast, we show that Hebbian learning rules, including three-factor extensions of Oja’s rule [21] and the BCM
rule [22], fail to learn generic stimulus-to-stimulus associations due to their statistical, non-predictive nature, and require
task specific parameter fine-tuning (S2 Text).

Results
Model setup

In classical conditioning animals learn to predict the upcoming appearance of an unconditioned stimulus (US, e.g. food)
after the presentation of a conditioned stimulus (CS, e.g. bell ring). As shown in Fig 1A, trials start with the presentation of
the CS, which lasts until {,, .. The US is presented at t,¢,,, and lasts until the end of the trial. Each trial has a fixed dura-
tion of t,i, seconds. If the US appears before the CS disappears, the task involves delay conditioning. In contrast, if the
CS disappears before the US is shown, the task involves trace conditioning, with tyejay = fys.0n — fes-of denoting the delay
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Fig 1. Model. (A) Every trial has a duration of f;; seconds. Trials start with the presentation of a CS, which disappears after time t.s . The associated
US appears at time t,s_o, and stays until the end of the trial. The network has to learn Ng;i,, unique CS-US pairs. (B) Associative neurons are modeled as
an abstraction of a layer-5 cortical pyramidal neuron. V' and V9 denote the voltage in the somatic and dendritic compartments. The somatic compart-
ment receives as input a Boolean vector r,¢ representing the US. The dendritic compartment receives as inputs a vector 7.5 with a short-term memory
representation of the CS, as well as recursive activity from all other neurons in the RNN. The matrices W;,,, W.s and W,¢ denote the synaptic weights
for the inputs. W, is fixed throughout the experiment. W,,,, and W 4 are updated over trials with training. (C) Full outline of the model. The associative
network is made of N, associative neurons. The US is presented directly to the associative neurons, whereas the CS is presented to a short-term
memory circuit that produces the short-term memory representation 7.s. Learning in the associated network is gated by a surprise signal which mea-
sures the extent to which the US, or its absence, was anticipated. The surprise signal is computed in three steps. First, throughout the trial a linear
decoder is used to obtain an estimate s of the US from the population vector of the associative network, denoted by r,,,. Second, an expectation E’

is formed according for each US based on the similarity between r{ls and 7. These expectations determine the level of surprise S associated with the
arrival or absence of the US, which then gives rise to neuromodulator dynamics that gate learning in the associative network. (D) Activity of the short-
term memory network in a single trial when CSs are presented only for 500 ms. We plot the output of the memory network for several seconds. Each
color denotes a different element in r.

https://doi.org/10.1371/journal.pcbi.1013672.g001

between the two stimuli. In our task animals need to learn Ng;,, different CS-US pairs. Every trial one pair is randomly
chosen, and the corresponding CS is shown followed by its associated US.

We model a RNN of associative neurons (Fig 1C, yellow background) that represents the stimuli using mixed popula-
tion representations and is capable of learning all of the CS-US associations using only local information available at the
synapses. The inputs to the model are time-dependent vectors r. (f) and r,s(f), of dimension N;y,, that encode the pres-
ence and identity of the CS and the US. For simplicity, these vectors are represented by unique Boolean vectors, and
they take the value of the stimulus while it is shown, and zero otherwise. The vectors are randomly generated, subject to
a constraint for a minimal Hamming distance Hy between any two vectors of the same type. This minimal separation limits
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the extent to which learning on any give pair impairs learning of the other associations. The output of the associative net-
work is an estimate of the US vector r¢, denoted 7,5, which is decoded from network activity at all times (see Fig 1C and
"US decoding” in Methods).

The fundamental unit of computation in the associative network is the associative neuron, a two-compartment neu-
ron modelled after layer-5 pyramidal cells in the cortex (Fig 1B). A crucial property of the associative neuron is that it
can separate incoming "feedforward” inputs from "feedback” ones, and compare the two to drive learning. In our case,
since we are modelling a primary reinforcer cortical area, US inputs are assumed feedforward and arrive at the somatic
compartment (corresponding to the soma and proximal dendrites) through synaptic connections W,, and CS inputs are
considered feedback connections arriving to the distal dendrites from the rest of the cortex, along with local recurrent con-
nections (W,s and W,,,, respectively, Fig 1B). This separation of inputs ultimately allows for the construction of a biologi-
cally plausible predictive learning rule, capable of achieving stimulus substitution. Note that here we are focusing on the
recurrent connections that arrive to the distal compartment, and hence can be modified through BAC firing, yet a lot of
recurrent connections also arrive in the somatic compartment in the canonical microcircuit [23]. Additionally, we show in
S1 Text that the recurrent connections are not even necessary for stimulus substitution.

Specifically, to account for the ability of the associative neuron to predict its own spiking activity to somatic inputs from
dendritic inputs alone [14], we utilize a synaptic plasticity rule that implements local error correction at the neuronal level
[15]. The learning rule modifies the connections to the dendritic compartment (i.e. W and W,,,,) in order to minimize the
discrepancy between the firing rate of the neuron f{(V*) (where V¢ is the somatic voltage, primarily controlled by US inputs
in the beginning of learning, and f the activation function) and the prediction of the firing rate by the dendritic compartment
fip'VY) (where VY is the dendritic voltage, primarily controlled by CS inputs, and p’ is a constant accounting for attenu-
ation of V9 due to imperfect coupling with the somatic compartment). The synaptic weight Wore post from a presynaptic
neuron to a postsynaptic associative neuron is modified according to:

AWpre post = 1(S) [ f(V;ost) —f(p’ Vr?ost)] Pore (1
where 7 is a variable learning rate which depends on a surprise signal S and P, the postsynaptic potential from the
presynaptic neuron (for details, see "Synaptic plasticity rule” in Methods). In S3 Text we show how this learning rule can
be derived directly from the objective of stimulus substitution. Furthermore, a learning rule similar to this, and versions of
it utilized in, e.g., [17,18], has been validated experimentally [20], going beyond mere biological plausibility.

During trace conditioning the CS disappears before the US appears, but an association is still learned. This experi-
mental finding suggests that the brain maintains some short-term memory representation of the CS after it disappears. To
capture this experimental finding in our model, we introduce a short-term memory RNN that maintains a (noisy) repre-
sentation of the CS, denoted by 7, over time (for details, see "CS short-term memory circuit” in Methods). As shown in
Fig 1D, the network is able to maintain short-term representations of the CS for several seconds before memory leak
becomes considerable. Note that it is also possible that such short-term memory can also be supported by behavioral
timescale plasticity rules, as discussed in the same section in Methods.

Finally, the learning rule is gated by a surprise mechanism mediated by diffuse neuromodulator signals [24], as follows:
Upon CS presentation, an expectation E is formed according to the proximity of Fs to r s for known USs (see "US expec-
tation estimation” in Methods). E can be thought of as the probability that some known US will appear. Upon US presenta-
tion, E is compared to 1 and a surpise signal S=1 — Eis formed and gates learning; the greater the surprise, the greater
the learning rate. If no US appears in the trial, then we set S = —E at {,,,; seconds after normal US presentation. Non-
zero values of S activate learning, in a process driven by two neuromodulators, one for positive and another for negative
learning rates (for details on dynamics, see "Surprise based learning rates” in Methods).
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Network learns stimulus substitution in delay conditioning

Consider a delay conditioning experiment in which the animal needs to learn 16 CS-US pairs, and the timing of the trial
is as shown in Fig 2A. Note that in this case the CS is present throughout the trial and, as a result, 7s ~ re. Although the
short-term memory network is not necessary in this particular experiment, we keep it in the model to maintain consistency
across experiments.

We train the RNN for a total of 1000 trials. Fig 2B compares the actual representations of all the USs, one component
at a time, with those decoded from the activity of the network in response only to the associated CSs. The network has
accurately learnt all of the associations after 500 training trials (~ 32 per CS-US pair).

We next investigate how learning evolves with the amount of training. Fig 2C compares the activity of the associative
neurons when presented only with the US, for all possible CS-US pairs, with their activity when presented only with the
associated CS. Early in training, the associative neurons exhibit little activity in response to the CSs, and their responses
are not correlated with the amount of activity elicited by the USs. By the end of training however, the neurons respond
to the CS the same way they respond to the US, therefore stimulus substitution is achieved. A host of conditioning phe-
nomena, detailed in following sections, follow from that. For further details on the trial dynamics of learning see S1 Text.
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Fig 2. Delay conditioning and stimulus substitution. (A) Trial structure. The network is presented with Ng;;,, = 16 different CS-US pairs, randomly
selected in each trial. (B) The network learns all of the CS-US pairs after 500 training trials (~ 32 per pair). r,s denotes the individual components of the
Boolean vectors encoding each of the USs. 5 denotes the individual components of the decoded USs, based only on the presentation of the associated
CSs, and measured just before the US appears. (C) Evolution of population responses during learning. Colors denote trial number. Each point compares
the firing rate of an associate neuron at that stage of learning for a specific CS-US pair when only the US, or only the associated CS are presented. The
colored lines are linear regression fits at each stage of learning. Responses in both (B) and (C) are steady state responses after 500 ms of presentation
of either stimulus (CS or US). (D) Evolution of predicted US during learning. Green curve depicts the average expectation across USs after the network
is presented only with the associated CS. Red curve depicts the distance between the true representation of the USs (r,s) and their decoded representa-
tion 7,5 when presented only with the associated CS. Individual pairs are shown in faint thin lines. (E) Number of trials required for the network to reach
80% performance for all pairs (defined as the first time at which the average expectation E across pairs exceeds 0.8) for different numbers of stimulus
pairs. Performance is measured just before the US appears. Error bands denote + SD computed across 5 different runs of the experiment. (F) Number
of trials required to reach 80% performance for all pairs for different levels of similarity in the encoding of the CS and US input vectors. Error bands
denote = SD computed across 10 different runs of the experiment.

https://doi.org/10.1371/journal.pcbi.1013672.9g002
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Importantly, in the Supplements we also show that three-factor Hebbian learning rules fail at stimulus substitution in our
experiments.

Fig 2D tracks the learning dynamics more closely. The green curve shows the average expectation E assigned to the
USs at different stages of training. Perfect learning occurs when E = 1 for all USs. The red curve provides a measure of
distance between the r,s and 7. We see that learning requires few repetitions per CS-US, and is substantially faster early
on.

There are three sources of randomness in the model: (1) randomness in the sampling of CS and US sets, (2) random-
ness in the order in which the stimulus pairs are presented, and (3) randomness in the initialization of W,,,,, W and W_.
In S1 Fig we explore the impact of this noise in our results by training 5 networks with different initializations and training
schedules. We find that the level of random variation across training runs is small, and is mostly dominated by random-
ness in the sampling of the stimuli. For this reason, unless otherwise stated, we present results using only a single training
run.

Since the RNN uses mixed representations over the same neurons to encode the stimuli, one natural question is how
does learning depend on the number of CS-US pairs in the experiment (Ng;,) and on the similarity of their representations
(rcs VS rus)-

We explore the first question by training the model for different values of Ny, and then measuring the number of trials
that it takes the network to reach a 80% level of maximum performance, defined as the level of training at which the aver-
age expectation E across pairs exceeds 0.8. Interestingly, the required number of trials follows a power law as a function
of the number of CS-US pairs, with an exponent of 1.70 (Fig 2E). This is likely due to interference across pairs: learning of
an association also results in unlearning of other associations at the single trial level. This interference gets worse as the
number of stimuli Ng;,, increases (S2 Fig), which might explain the power law dependence. Finally, note that the network
is capable of very fast learning when there are only a few pairs (about 5 presentations per pair for two pairs, Fig 2E).

We explore the second question by training the model for different values of the Hamming distances Hy, which provides
a lower bound on the similarity among USs and, separately, among CSs. Ng;,, = 8 for these experiments. Perhaps unsur-
prisingly, the more dissimilar the stimulus representations, the faster the learning (Fig 2F). S3 Fig shows how smaller Hy
naturally leads to greater interference across stimuli.

Short-term memory and trace conditioning

Next we consider trace conditioning experiments, in which there is a delay interval ¢y, > 0 between the disappearance of
the CS and the arrival of the US (Fig 3A). In this case the memory network is crucial for maintaining a memory trace of the
CS to be associated with the US.

As before, we train the RNN for 1000 trials, with 16 different pairs, to explore how learning changes over time and
how the delay tye4y > O affects learning. For comparison purposes, we include the case of delay conditioning in the same
figures (fyelay = —1'8).

Fig 3B shows the quality of the decoded representation of the US and Fig 3C-D the strength of the associated expec-
tation signal, both measured offline and in response only to the CS. We find that the RNN learns the associations well for
small delays, but that the quality of the learning decays for larger delays. This pattern has been observed in animal exper-
iments [25], and the model provides a mechanistic explanation: conditioning worsens with increasing delays because the
memory representation of the CS is leaky and degrades at longer delays, as shown in Fig 1D.

Extinction and re-acquisition

The model can also account for the phenomenon of extinction. To investigate this, we focus on the case in which the RNN
only needs to learn a single CS-US pair in the delay conditioning task described before. We keep the same trial structure,
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Fig 3. Trace conditioning. (A) Trial structure. The network is presented with N, = 16 different CS-US pairs, randomly selected in each trial. (B) After
500 training trials (~ 32 per pair), the network learns all of the CS-US pairs for short t4el4y, but struggles for longer delays. rs denotes the individual com-
ponents of the Boolean vectors encoding each of the USs. s denotes the individual components of the decoded USs, based only on the presentation
of the associated CSs. For comparison purposes, we also show results for delay conditioning (fgelay = —1) (C) Evolution of predicted US during learning.
Each curve depicts the expectation for each US after the network is presented only with the associated CS. Line is the mean across all stimulus pairs.
Bands represent the + SD across stimulus pairs. (D) Network learning performance after 500 training trials for different CS-US delays. Bars denoted +
SD across stimulus pairs.

https://doi.org/10.1371/journal.pcbi.1013672.g003

except that the US is not shown at all, and the trial duration is extended (Fig 4A). The latter is important because in extinc-
tion, the computation of surprise in Eq 22 is triggered £, seconds after the normal time the US would appear, where {,,,;;
is the time after which the US is no longer expected. Without loss of generality, we set t,.;; = 5 seconds.

As shown in Fig 4B, the network learns this association with a small number of trials. At this point the extinction regime
is introduced by presenting the same CS in isolation, and as a result the learned association rapidly disappears from the
network (Fig 4B,C). The same phenomenon holds in networks that learn multiple associations (S4 Fig, panels A,B).

Fig 4D looks at the phenomenon of re-acquisition where, after a period of extinction, the same CS-US pair is reintro-
duced in training. A common finding in many classical conditioning experiments is that re-acquisition is faster than the
initial learning [26]. To test this, we compare two cases: one in which the same US is used during re-acquisition (shown
in blue), and one in which a different US is used during re-acquisition (shown in red). We find that re-learning an asso-
ciation to the same US is faster, therefore accounting for experimental findings on re-acquisition. Furthermore, our net-
work provides a mechanistic explanation: re-acquisition is faster because the responses of the neurons in Fig 4C have not
decayed to zero, even though the expectation almost has. Therefore, re-learning is faster to begin with, although the new
pattern catches up later.

Phenomena arising from CS competition

So far we have focused on experiments in which the network needs to learn one-to-one CS-US pairings. However, some
of the most interesting findings in conditioning arise when multiple CSs are associated with the same US.
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Fig 4. Extinction and re-acquisition. (A) Trial structure. In trials where there US is not shown, surprise is computed at { ~ 6 seconds. (B) Learning and
extinction path for the acquisition of a single CS-US pair. (C) Evolution of population responses during extinction. Colors denote extinction trial number.
Each point compares the firing rate of an associate neuron at that stage of learning for a specific CS-US pair when only the US, or only the associated

CS are presented. (D) Learning, extinction and re-acquisition path. Blue line involves an experiment in which the same CS-US pair is used in training
and re-acquisition. Red line involves an experiment in which a new US is used at the re-acquisition phase.

https://doi.org/10.1371/journal.pcbi.1013672.9g004

To explore this, we extend the model to the case in which the network can be exposed to two CSs for each US (Fig
5A). Now there are two separate RNNs of associative neurons, one for each CS. Without loss of generality we focus on
delay conditioning and therefore, for the sake of simplicity, we remove the short-term memory network and directly feed
inputs for the respective CSs (denoted by r.1 and r.,). The activity of these populations is used to decode the identity of
the US, based on the activity generated by each CS separately. These predictions are then used to generate expectations
E.s1 and E,, which denote the predicted strength generated by each of them when shown in isolation. The total expecta-
tion for the US is then given by E = E.;; + E. The same logic could be extended to more than two CSs. For all of these
experiments, we learn a single association between a pair of CSs and a single US, i.e. Ng;, = 1, and have lowered the
baseline learning rate ten-fold (1, = 5 * 10~*) to make the effects of learning more visible.

Fig 5B presents the results for a typical blocking experiment. We first present CS; alone for the first 100 trials, resulting
in the acquisition of an expectation very close to 1. Subsequently, we start presenting both CSs together. However, the
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Fig 5. Blocking, overshadowing, saliency and overexpectation. (A) Model extension to allow for simultaneous presentation of two CSs. Associa-
tions for CS7 and CS, are represented in separate populations of associative neurons. The activity of each population is used to separately decode the
US and to construct expectations E.s4 and E.s,. The overall expectation generated by the two CSs is given by E = E¢4 + E.s». Experiments assume
that a single association between the US and both CSs has to be learnt. E.qq is the prediction generated by CS; alone. E, is the prediction generated
by CS, alone. and E g4 + E.s; is the prediction generated by both cues together. Since the CSs are present throughout the trial, we omit the short-term
memory networks from this exercise. (B) Blocking: CS; is presented in isolation and fully learns to predict the US before CS; is introduced. In this case,
CS, is blocked from learning to predict the US. (C) Overshadowing: Both CSs are presented from onset and none of them reaches the same condi-
tioning level as when it was presented alone; instead, the sum E of their expectations learns the full association. (D) Saliency effects: similar to (C), but
now the relative salience of CS; has been increased by scaling up its input vector. As a result, the final conditioning level of CSy is consistently higher
than the one for CS,. (D) Overexpectation: CS4 and CS, are conditioned separately. When presented together, E exceeds 1, which leads to a negative
learning rate and unlearning.

https://doi.org/10.1371/journal.pcbi.1013672.9g005

US is already well predicted from CS;, resulting in small surprises after CS, is introduced, and thus an approximate zero
learning rate. Thus, in this setting the model generates the well established phenomenon of blocking.

Fig 5C studies an overshadowing experiment. Here we present both CSs together from the first trial. In this case both
of them develop an expectation from the US, but neither individually reaches 1. Instead, it is the sum of their expectations
that learns the association. Thus, in this setting the model generates the well established phenomenon of overshadowing.
Notice that the expectation stemming from one of the CSs is larger than the other, which can be attributed to randomness
in the weight matrix initializations. Specifically, a certain set of matrix initializations can favor one pattern association over
the other (i.e. make it easier for that specific CS to predict that specific US).

Fig 5D investigates the impact of stimulus saliency in CS competition. Salient stimuli receive more attention and gen-
erate stronger neural responses than similar but less salient ones [27]. We model relative saliency by multiplying the
input vector r.gq of CSy, the high-saliency cue, by a constant s, = 1.2, while keeping r.s, the same. Otherwise, the task
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is identical to the case of overshadowing. Consistent with animal experiments, Fig 5D shows that the more salient CS;
acquires a substantially stronger association with the US than the less salient CS,. This results from the fact that the more
salient stimulus leads to higher firing rates, and thus to stronger pre-synaptic potentials which strengthen learning at those
synapses. These phenomena also hold in networks that learn multiple associations (S4 Fig, panels C,D and E).

Finally, Fig 5E presents the results for a typical overexpectation experiment. Here CS; is presented alone for the
first 100 trials, CS, is then presented alone for the next 100, and starting from trial 200, both CSs are presented
together. Since at this point the CSs already have expectations very close to 1, their joint expectation greatly surpasses
1. As a result, surprise is now negative, leading to unlearning of both conditioned responses, up to the point where
Ecs1 + Ecs2 ~ 1.

Contingency and unconditional support

So far we have considered experiments that depend on the temporal contiguity of the CS and US. Another important vari-
able affecting conditioning is contingency; i.e., the probability with which the CS and the US are presented together [28].

To vary the level of contingency, the US is shown in every trial, but the CSs are presented only with some probability,
which we vary across experiments. Note that this is not the only way of running contingency conditioning experiments. For
example, one could change the contingency by showing the CSs every trial and then only show the US with some proba-
bility. This would manipulate the degree of contingency, but also introduce an element of extinction, since there are some
trials in which no US follows the CS. We favor the aforementioned experiment because it eliminates this confound.

Fig 6A involves experiments with a single CS which is shown with different probability. Consistent with the animal
literature [28], we find that the strength and speed of learning increases with the CS-US contingency.

Fig 6B involves experiments with two independent predictive stimuli. Every trial CS; is shown with probability 0.8
and, independently, CS, is shown with probability 0.4. Unsurprisingly, we find that the CS with the highest contingency
acquires the stronger predictive response. Note that the conditioned responses do not need to add up to 1 in this setting.

Fig 6C, 6D involves a different probabilistic structure for the CSs. CS; is shown every trial with probability 0.8, as
in the previous case. But now CS, is only shown if CS; is present, and with various probability P(CS,|CS;). When
P(CS,|CS,) = 0.5, the unconditional probabilities of the two CSs are the same as in Fig 6B, but the associations learnt are
different. After an initial acquisition phase, E., decays monotonically to zero. More interestingly, the same effect arises if
P(CS,|CS;) =0.875, where P(CS2) = 0.7: even though the two CSs are similarly likely, E.;, decays to zero after initially
going toe-to-toe with E4. This exemplifies the heavily non-linear behavior of this phenomenon.

To explain this finding, we need to introduce the concept of unconditional support. A CS has unconditional support if
there are trials when it is presented by itself, which means the network has to rely on it to predict the incoming US. In
Fig 6B, both CSs have unconditional support, albeit CS,’s is much lower. This explains both the noisiness in E.g,, which
increases each time CS, is presented alone, and the fact that E, < E4. However, the situation drastically changes
when CS; is only presented together with CS;. Here CS, has no unconditional support. Initially, both CSs are condi-
tioned, until the sum of their conditioned responses reaches 1. At that point no more positive surprise is generated for
CS,. When CS; is presented alone, S>0 because E ¢ < 1, which leads to an increase in the E; association. When both
CSs are presented together, the sum of their conditioned responses is now greater than 1, and therefore S<0 and both
conditioned responses drop. As a result, over time E., gradually decay to zero. This also explain why E_ takes longer to
decay when P(CS,|CS;) is high.

In this task, CS, is a spurious predictor of the US, since it only appears if CS; is shown, and has no additional predic-
tive value conditional on CS;, as shown in Fig 6E. Essentially, the network learns to retain the predictive relationship but
erase the spurious one. Importantly, we did nothing that would bias the network towards developing this strikingly non-
linear effect.
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Fig 6. Contingency and causality. The US is shown every trial, while the contingency of the CSs is varied. (A) Impact of changing the probability of
showing the CS in every trial. Each line depicts the learning path for a different experiment. (B) Experiment with two independent predictive stimuli. In
every trial, CS is shown with probability 0.8 and CS, is shown with probability 0.4. Blue curve is the expectation acquired by CS; when shown by itself.
Orange curve is the expectation acquired by CS, when shown by itself. (C,D) Experiments with a conditional CS structure. Every trial CS; is shown with
probability 0.8 and CS, is shown only if CS; is also present, with probability P(CS,|CS;). (E) The network learns to ignore spurious predictors. Since
CS, is conditionally dependent on CSy, our network gradually phases out any explanatory power of CS,, as more evidence that the US is never caused
by the CS, by itself arrives.

https://doi.org/10.1371/journal.pcbi.1013672.9g006

Finally, note that compared to other conditioning phenomena, the network takes substantially longer to learn the predic-
tive structure of the task. Combined with the fact that real world data are scarce and often ambiguous, this might explain
why spurious inferences often persist in the real world.

Discussion

The ability to engage in stimulus-stimulus associative learning provides a crucial evolutionary advantage. The cerebral
cortex might contribute to this evolutionary edge by exploiting representational [7] and architectural [14] inductive biases
present in the cortical microcircuit [10]. We here propose a recurrent neuronal network model of how the cortex can imple-
ment stimulus substitution, which allows the same set of neurons to encode multiple stimulus-stimulus associations. The
model relies on the properties of two-compartment layer-5 pyramidal neurons, which based on recent experimental find-
ings, we refer to as associative neurons. These neurons can act as coincidence detectors for information about the US
arriving at their somatic compartment and information about the CS arriving at their dendritic compartment [11,12,14].
Coincidence detection allows for a biologically plausible synaptic plasticity rule that, after learning, results in neurons that
would normally fire in the presence of the US to respond in the same manner when the CS is presented. At the population

level, this means that the pattern of neural activity corresponding to the CS can be morphed into the one corresponding to
the US, leading to stimulus substitution.
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Our model accounts for many of the most important conditioning phenomena observed in animal experiments, includ-
ing delay conditioning, trace conditioning, extinction, blocking, overshadowing, saliency effects, overexpectation and
contingency effects. The model is able to learn multiple CS-US associations with a degree of training that is commensu-
rate with animal experiments. Significantly, the model performs well across a wide variety of conditioning tasks without
experiments-specific parameter fine-tuning.

We also show that some influential models of three-factor Hebbian learning rules — Oja’s rule [21] and the BCM rule
[22] — fail to learn generic stimulus-stimulus associations due to their unsupervised nature. Hebbian rules have demon-
strable autoassociative [29] and heteroassociative [30] capabilities, and when augmented with eligibility traces they have
been shown to account for neuronal-level reinforcement learning [16,31,32]. Still, they struggle with pattern-to-pattern
associations when representations are mixed. This is because Hebbian rules are purely unsupervised, and therefore
provide no guarantee that the impact of the CS will be eventually shaped to be identical to the one of the US. Instead,
network performance heavily depends on implementation details, like training history, task details and stimulus statis-
tics. As a result, decoding from a population encoding several associations is hampered by the fact that activation levels
for individual neurons when exposed to the CS will more often than not be off from those resulting from exposure to the
corresponding US.

Related work utilized a predictive learning rule similar to the one used here to account for prospective coding of antic-
ipated stimuli [33]. While prospective coding might also be involved in conditioning, their study differs in several ways.
First, their learning rule is timing-dependent; it succeeds in a delayed pair associative learning task, but it would require
re-learning when the relative timing of the US in relation to the CS is variable. In contrast, our learning rule applies to arbi-
trary task timings (see S2 Text and Fig B in S2 Text, panel E). Second, their learning rule lacks gating which, unless strict
conditions are met (dendritic and somatic activity conditioned on a stationary Markov chain), leads to reduced responses
and even catastrophic forgetting. Furthermore, adding gating is not feasible in their model, because learning needs to
bootstrap before the presentation of the delayed stimulus, and gating would inactivate learning at these times.

Several features of the model are worth emphasizing.

First, the proposed RNN leverages architectural inductive biases in the form of two-compartment associative neurons.
These associative neurons are the most common neuron type in the mammalian cortex [10]. This is likely no coincidence;
once evolution stumbled upon their usefulness in predicting external contingencies, it might have favored them. While
subcortical [8] and even single-neuron [9] mechanisms for conditioning exist, the mechanism that we propose can handle
mixed representations, and thus allow animals with a cerebral cortex to flexibly learn large numbers of associations.

The structure of the associative neuron is ideal for stimulus-stimulus learning. Feedforward inputs, like the US
representations, arrive near the soma in layer-5 and directly control the neuron’s firing rate. Feedback inputs, like the CS
representations and the activity of other cortical neurons, arrive at the distal dentrites in layer-1 [12]. This compartmental-
ized structure allows the signals to travel independently, and get associated via a cellular mechanism known as BAC firing
[14]. Specifically, it has been shown that these cells implement coincidence detection, whereby feedforward inputs trig-
ger a spike which backpropagates to the distal dendrites and concurrently feedback input arrives at these dendrites, then
plateau calcium potentials are initiated in the dendritic compartment [14]. These plateau potentials result in the neuron
spiking multiple times subsequently and learning occurs in the distal dendrites, so that feedback inputs can elicit spikes
alone in the future, without the need for external information.

Second, a prerequisite for the biological plausiblity of the learning rule used in the model is that backpropagating
action potentials to be disentangled from postsynaptic potentials at the dendritic compartment. Only then can the two crit-
ical components in our learning rule, (V) and f(p’ V¢) in Eq 1 be compared. Since backpropagating action potentials
(denoted by f(V®) in the model) do not need to travel far, they experience minimal attenuation [14] and therefore they
maintain some of their high-frequency components, which could be used at synapses to differentiate them from slower
postsynaptic potentials (denoted by V¢ in the model). As a result, only a static transformation of this last term is needed to
compare the two signals. Consequently, the learning rule relies only on information locally available at each synapse,
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which is a prerequisite for biological plausibility. As a side note, comparison of these two signals is not strictly necessary.
As explained in "Convergence of the synaptic plasticity rule” in the Methods, simply biasing learning to the right direction
by the US input is enough, and this is in line with findings in ML that simply transmitting the sign of the error in stochastic
gradient descent can be adequate [34], and has also been demonstrated in the context of temporal rules in computational
neuroscience [35], and suggested by experimental findings of up/down modulation in the entorhinal cortex [36].

Third, our model suggests multiple functional roles for gating. It limits learning to episodes that appear to have behav-
ioral significance. Gating also prevents drifting of learned associations due to a lack of perfect self-consistency between
f(v®) and f(p' VY) in the learning rule [16], which is expected in a biological system subject to noise and approximate
computation. In addition, gating provides a critical global reference signal when multiple CSs are available at the same
time.

The model also has some limitations to be addressed in future work. Most importantly, it does not account for spon-
taneous recovery of previously learnt associations after extinction. In our model, extinction stems from the decay of the
response of the associate neurons to the CS, a mechanism akin to unlearning, which erases previous learning, and
thus does not allow for spontaneous recovery. The extinction mechanism proposed here is complementary to inhibitory
learning, the mechanism initially put forth by Pavlov to explain spontaneous recovery. On a different but related note,
we elected to keep the model more streamlined by omitting any inhibitory populations, and only focusing on the essen-
tial mechanisms of interest. However, if the model could be extended to account for wider cortical column functions
(gating, context switching, etc), the inclusion of inhibitory populations would be necessary, and might also explain sponta-
neous recovery through disinhibition. Finally, another phenomenon of interest related to inhibition is latent inhibition [37],
whereby pre-exposure to an irrelevant stimulus prevents animals from learning to associate that stimulus to an outcome.
Future models of conditioning could endeavor to incorporate psychophysical phenomena such as this.

In the case of experiments with multiple CSs, the model assumes that different neuronal population implements sepa-
rate RNNs to learn the associations for each of them. Although the two populations interact indirectly through the surprise
signals, they each learn to predict the US on their own. The existence of separate populations might be justifiable when
the CSs involve different sensory modalities (e.g., sound and vision), or very different spatial locations, but not necessarily
when they are presented simultaneously. Extending the model to include differential routing of simultaneously presented
stimuli is an open question for future work.

Related to the experiments with multiple CSs, a common fallacy of causal reasoning that exists is known as the post
hoc ergo propter hoc fallacy [38]. It posits that the temporal proximity of two events is sufficient to infer that the earlier
event is a contributing cause of the latter. This can lead to erroneous conclusions, when such temporal proximity is coin-
cidental. In Fig 6C-E, CS; is predictive of both CS, and the US, but CS, is not predictive of the US, despite it preceding it
temporally. Therefore, the network can recognize the lack of predictive ability (or unconditional support) of CS,, resolving
the post hoc fallacy in this simpler predictive setting. Similar mechanisms might allow the brain to perform more advanced
forms of causal reasoning.

Another direction for future work is to account for more psychological aspects of conditioning by developing a larger
model that incorporates other forms of learning and generalization like model-based strategies also thought to take place
in the PFC [39], or to allow for context-dependent computation to resolve conflicts among competing stimuli [40]. In these
larger models, our network would model the stimulus substitution component.

The model allows to differentiate between conditioning effects that can be accounted by low-level, synaptic plasticity
mechanisms, versus other high level explanations. At its core, the model performs stimulus substitution at the neuronal
level, via a gradual acquisition process [41-43]. Despite that, the model is still capable of rapid, few-shot learning, espe-
cially when the number of associations is small compared to size of the network (Fig 2E). Yet, for rapid learning in more
complicated scenarios, fast inference based on prior knowledge might be necessary [44].
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Finally, our model suggest an alternative role for representational inductive biases in the form of mixed selectivity, other
than readout flexibility [45]: it permits the efficient packing of multiple stimulus-stimulus associations within the same neu-
ronal population, which might confer cortical animals the evolutionary edge.

Methods
RNN of associative neurons

The central element of the model is a RNN of N,,,, associative neurons. The goal of the network is to learn to predict the
identity of the upcoming US from the presentation of the corresponding CS, by reproducing the US population vector
when only the CS is presented. Each associative neuron is a two-compartment rate neuron modelled after layer-5 pyra-
midal cortical neurons [14,15]. The somatic compartment models the activity of the soma and apical dendrites of the neu-
ron, while the dendritic compartment models the activity of distal dendrites in cortical layer-1. As depicted in Fig 1B, the
somatic compartment receives r(t) as input, whereas the dendritic compartment receives 7 (f) as well feedback activity
from the all the RNN units, which is denoted by r,,,(1).

The instantaneous firing rate of the associative neurons is a sigmoidal function of the somatic voltage V*:

f.
rmn = L . 2
T exp [<B(VE — Vi) @

This activation function is applied element-wise to the vector V', which represents the instantaneous somatic voltage in
each associative neuron. f.,,, sets the maximum firing rate of the neuron, § is the slope of the activation function, and V;,
is the voltage level at which half of the maximum firing rate is attained. We set f,,« to a reasonable value for cortical neu-
rons, and choose appropriate values for g and V,,, so that the whole dynamic range of the activation function is used and
firing rates when somatic input is present are relatively uniform. See Table 1 for a description of all model parameters, and
S1 Table for their justification.

The somatic voltages, and thus the firing rates, are determined by the following system of differential equations:

+ The associative neurons receive an input current to their dendritic compartments, denoted by /9, which obey:

drd

TSE =—/9+ Wes Tes + Winn finn (3)

where W,,, is the matrix of synaptic weights between any pair of associative neurons (dimension: N, X N;nn), W is the
matrix of synaptic weights for the CS input (dimension: N, X Ni,,), and , is the synaptic time constant.
+ The dynamics of the voltage in the dendritic compartments V¢ are given by:

dvd
_— —Vd Id' 4
i.e. it is a low-pass filtered version of the dendritic current /¢ with the leak time constant z;. For simplicity, voltages and
currents are dimensionless in our model. Therefore the leak resistance of the dendritic compartment is also dimension-
less and set to unity.

» The voltages of the somatic compartments, denoted by V*, are given by:

dvs

Cdt

=—g1V® —gp(V* = VH+1° S
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Table 1. Model parameter values. These values apply to all simulations, unless otherwise stated. Note that voltages, currents, and
conductances are assumed unitless in the text; therefore capacitances have the same units as time constants.

Parameter Value Units Description

Nstim 16 Number of CS-USs pairs to be learnt

tirial 2 s Trial duration

tes-off 2 s Time in the trial at which CS disappears

tus-on 1 S Time in the trial at which US appears

Ninp 20 Stimuli input vector length

Hy 8 Minimal Hamming distance between behavioral stimulus vectors
Nin 64 Number of associative neurons

fnax 100 spikes/s Maximum firing rate

I 2 Steepness of activation function

Vi 1.5 Input level for 50 % of the maximum firing rate

Tg 100 ms Synaptic time constant

T 20 ms Leak time constant of dendritic compartment of associative neurons
C 2 ms Capacitance of somatic compartment of associative neurons

aL 0.1 Leak conductance of somatic compartment of associative neurons
[o]5) 0.2 Conductance from dendritic to somatic compartment

Ginh 3/8 Constant inhibitory conductance

E. 14/3 Excitatory synaptic reversal potential

E; -1/3 Inhibitory synaptic reversal potential

a 0.95 Constant for deviation of the learning rule from self-consistency
T 200 ms Dopamine release time constant

Ty 300 ms Dopamine uptake time constant

Mo 5*1073 Baseline learning rate

At 1 ms Euler integration step size

https://doi.org/10.1371/journal.pcbi.1013672.t001

where C is the somatic membrane capacitance, g, is the leak conductance, g, is the conductance of the coupling from

the dendritic to the somatic compartment, and /¢ is a vector of input currents to the somatic compartments. Note that

this specification assumes that the time constant for the somatic voltage is one, or equivalently, that it is included in C.
» The vector /® of input currents to the somatic compartment is given by:

I°=ge ©(Ee—V®)+giO(Ei-V?) (6)

where g, and g; are vectors describing the time-varying excitatory and inhibitory conductances of the inputs, E, and E;
are the reversal potentials for excitatory and inhibitory inputs, and ® denotes the Hadamard (element-wise) product.

» The vectors of excitatory and inhibitory conductances g, and g; for the somatic compartment are described, respec-
tively, by the following two equations:

dg
Tsd_te =—0e + [Wus]+rus (7)
and
dag;
TSC% =—0i+ [_Wus]+ Ius * Ginh (8)

where W, is a matrix describing the synaptic weights for the US inputs to the somatic compartments (dimension: N, X
Ninp), Ts is the same synaptic time constant used in Eq 3, gin, is a constant inhibitory conductance of all associative
neurons, and [.], is the rectification function applied element-wise.
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The model implicitly assumes zero resting potentials for the somatic and dendritic compartments. In addition, we
assume that there is no input to the RNN between trials, and that the inter-trial interval is sufficiently long so that the vari-
ables controlling activity in the associative neurons reset to zero between trials. The differential equations describing activ-
ity within trials are simulated using the forward Euler method with time setp At =1 ms.

At the beginning of the experiment, all synaptic weight matrices are randomly initialised, independently for each entry,
using a normal distribution with mean 0 and standard deviation 1/\/m, as is standard in the literature. Note that since
associative neurons are pyramidal cells, the elements of W, are restricted to positive values; hence we use the absolute
value of those random weights.

W, stays fixed for the entire experiment. W,,, and W, are plastic and updated using the learning rules described next.

Synaptic plasticity rule
We utilize a synaptic plasticity rule inspired by [11,12,14], where the firing rate of the somatic compartment in the pres-
ence of the US acts like a target signal for learning the weights W,,, and W, (see [15] for the initial spike-based learning
rule, and [46] for the rate-based formulation). The learning rule modifies these synaptic weights so that, after learning, CS
inputs can predict the responses of the RNN to the USs.

Consider the synaptic weights from input neuron j to associative neuron j, for either the RNN or the CS inputs. The
weights are updated continuously during the trial using the following rule:

AW =n(S)[ V) - fip' V| P, 9)

where 7(S) is a variable learning rate that depends on the instantaneous level of a surprise signal S, p’ is an attenuation
constant derived below, and P; is the postsynaptic potential in input neuron j.

The postsynpactic potential P; has a simple closed form solution detailed in [46]. In particular, it is a low-passed filtered
version of the neuron’s firing rate, so that

Pi() = H(®) * r(®), (10)

where x denotes the convolution operator, and H is the transfer function given by

1

T —Ts

H() =

exp(—fil)— exp(—é) u(t) (11)

and u(t) is the Heaviside step function that takes a value of 1 for >0 and a value of 0 otherwise.

As noted in [46], for constant 7 the learning rule is a predictive coding extension of the classical Hebbian rule. When
7 is controlled by a surprise signal, as in our model, it can be thought of a predictive coding extension of a three-factor
Hebbian rule [32,47].

Importantly, all of the terms in the learning rule are available at the synapses in the dendritic compartment, making this
a local, biologically plausible learning rule. The firing rate of the neuron f(V?) is available due to backpropagation of action
potentials [14]. f(p’ \/I.d) is a constant function of the local voltage VI.d computed locally in the dendritic compartment even
when the somatic input is present. By definition, postsynaptic potentials are available at the synapse.

There are a total number of Ny, training trials, divided among all CS-US pairs. After each training trial we measure the
state of the RNN off-line by inputing one r at a time without the US, keeping the network weights constant, and measur-
ing the output produced by the model at that stage of the learning process.
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Convergence of synaptic plasticity rule

To understand how and why the learning rule works, it is useful to characterize the somatic voltages, and thus their asso-
ciated firing rates, in different trial conditions.

Consider first the case in which only the CS is presented, so the associative neurons only receive dendritic input. In this
case the somatic voltages converge to a steady-state given by

vss—_ 90 4 (12)
9o+ 9L

In other words, the somatic voltages converge simply to an attenuated level of the dendritic voltages, with the level of
attenuation given by p = ggTDg' In this case, the firing rates of the associative neurons converge to
DTYL

o = f(V) (13)

This follows from the fact that the dendritic voltage is determined only by Egs 3 and 4, and thus is not affected by the
state of the somatic compartment, and by the fact that in the absence of US input /° = 0. The result then follows immedi-
ately from Eq 5.

Next consider the case in which only the US is presented. In this case Egs 3 and 4 imply that V¢ = 0, and it then fol-
lows from Egs 5 and 6 that the steady-state somatic voltage, when /® =0, is given by

geEe + giE

vea( = 22—~ I 14
® 9.7 (14)

and that the firing rates of the associative neurons become
" = f(V29). (15)

Finally consider the case in which the associative neurons receive input from both the CS and the US. We follow [33] to
derive the steady-state solution for the somatic voltage in this case. Provided inputs to the circuit, which are in behavioral
timescales, change slower than the membrane time constant (C/g, = 20 ms), Eq 5 reaches a steady-state given by

V() = kVS + (1 —x)Ve9, (16)
% € (0, 1] performs a linear interpolation between the steady-state levels reached where only the
CS or the US are presented.
Practically, when there is no US-input, V*® slightly precedes V* due to the non-zero dendritic-to-somatic coupling
delays, resulting in slight overestimation of the firing rate upon CS presentation. This can be accounted for by introducing
an additional small attenuation, so that p’ = a =apin Eq9, with a=0.95.

where x(f) =

Learning is driven by a comparison of the fmng rates of the associative neurons in the presence of both the CS and the
US, and the firing rates if they only receive input from the CS. Importantly, this can happen online and without the need
for separate learning phases, because an estimate of the latter can be formed in the dendritic compartment at all times.
Learning is achieved by modifying W,,, and W, to minimize this difference. We can use the expressions derived in the

previous paragraphs to see why the synaptic learning rule converges to synaptic weights for which r%°" = rboth
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Take the case in which associative neurons underestimate the activity generated by the US inputs when exposed only
to the CS (i.e. V% < V®9). In this case, V¥ < V¢ < V¥ and /® > 0. Then from Eqg 9 we find that Aw > 0, leading to a futures
increase in associative neuron activity in response to the CS.

The same logic applies in opposite case, where the associative neurons overestimate the activity generated by the US
inputs when exposed only to the CS. In this case, V% > V* > V® and /°® < 0, which leads to a future decrease in associa-
tive neuron activity in response to the CS.

Given enough training, this leads to a state where V% ~ V®9 and at which learning stops (Aw = 0). When this happens,
we have that

o™ = R(V%%) & (V) = o, (17)

so that the RNN responses to the CS become fully predictive of the activity generated by the US, when presented by
themselves.

US decoding

Up to this point the model has been faithful to the biophysics of the brain. The next part of the model is designed to cap-
ture the variable learning rate n in Eq 9, and thus is more conceptual in nature. Our goal here is simply to provide a plau-
sible model of the factors affecting the learning rates for the RNN. As illustrated in Fig 1C, this part of the model involves
three distinct computations: decoding the US from the RNN activity, computing expectations about upcoming USs, and
computing the surprise signal S.

The brain must have a way to decode the upcoming US, or its presence, from the population activity in the RNN at any
point during the trial. This prediction is represented by the time-dependent vector 7,,(f). For the purposes of our model, we
will use the optimal linear decoder D (dimension: Ny, X Niyp), so that

i’us(t) = rrnn(t)TD- (1 8)

The optimal linear decoder D is constructed as follows. First, for each US i = 1, ..., N, define the row vector ¢, describ-
ing the steady-state firing rate the each associative neuron that arises when it is presented alone. Then define an activity
matrix ® by stacking vertically these N, row vectors (dimension: Ng;,, X Nipn)- @ is built using the initial random weights
Winn, before learning has taken place. Second, define a target matrix T (dimension: Ny X Nj,) to be the row-wise con-
catenated set of US input vectors rs. Then, if D perfectly decodes the US from the RNN activity, when only the USs are
presented, we must have that

®D=T. (19)
It then follows that
D=o%T, (20)
where * denotes the Moore-Penrose matrix inverse. A desirable property of the Moore-Penrose inverse is that if Eq 20
has more than one solutions, it provides the minimum norm solution, which results in the smoothest possible decoding.
Note that the decoder, which could be implemented in any downstream brain area requiring information about USs,

is completely independent of the input representations of the CSs. Instead, it is determined before learning given only
knowledge of the USs, and is kept fixed throughout training.
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US expectation estimation

Since the USs are primary reinforcers, it is reasonable to assume that their representations, r|; for i=1, ..., Ngjin, , are
stored somewhere in the brain. Then an expectation for each US can be formed by

E'(t) = exp(—x|[Fus(®) — 11, (21)

where ||Ps(f) — rs|| is Euclidean distance between the stored and the decoded representations for each US at time t, and

x controls the steepness of the Gaussian kernel. Recognizing that the ability to discriminate these patterns increases with
2

the Hamming distance Hy, we set the precision to be inversely proportional to Hy i.e. x = (3) .
d

Note that £’ takes values between 0 and 1, and equals 1 only when the US is perfectly decoded (i.e., when F s = r.).
Thus, E' can be interpreted as a probabilistic estimate for each US that is computed throughout the trial. To simplify the
notation, we denote the expectation for the US associated with the trial as E.

Surprise based learning rates

The learning rule in Eq 9 is gated by a well-documented surprise signal [24]. This surprise signal diffuses across the brain,
and activates learning in the RNN.
For each US the following surprise signal is computed throughout the trial:

S'(t) = 8(t — tiig) (Tus — E'(t = tsyn)). (22)

where 1gi is an indicator function for the presence of US-/, ¢ is the Dirac delta function and 4 the time a surprise signal
is triggered. In trials where the US appears, we set tig = tys.on + tsyn, Where f, = 27, = 200 ms is a synaptic transmission
delay for the detection of the US which matches well perceptual delays [48]. The expectation E' also lags by the same
amount, representing synaptic delays from the associative network to the surprise computation area. As can be seen in
Eq (22), the more the US is expected upon its presentation, the lower the surprise. In extinction trials, we set t;g = f;s.on +
tsyn + twait, Where 4 is a time after which a US is no longer expected to arrive. The overall surprise signal is given by:

S=>5. (23)

The surprise signal S gives rise to neuromodulator release and uptake which determine the learning rate n. We assume
that separate neuromodulators are at work for positive and negative surprise, and that they follow double-exponential
dynamics [49].

Consider the case of positive surprise. The released and uptaken neuromodulator concentration C and C are given
by:

dct
,— =—C +[S], (24)
dt
and
dct
Tud—tu = _CLT + C:_ (25)

where 7, and 7, are the neuromodulator release and uptake time constants respectively, chosen to match the dopamine
dynamics in Fig 1B in [49].
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Negative surprise is controlled by a different neuromodulator, described by the following analogous dynamics:

dc; _
T = -Cr +[-S], (26)
and
dC; _ _
T, T =-C; +C; (27)

The neuromodulator uptake concentrations control the learning rate:
n=mno (CJ = Cy), (28)
where 7 is the baseline learning rate.

CS short-term memory circuit

We now describe the short-term memory network used to maintain the 7., representation that serves as input to the RNN.
To obtain a circuit that can maintain a short-term memory through persistent activity in the order of seconds [50], we
train a separate recurrent neural network of point neurons using backpropagation through time (BPTT). These networks
have been deemed to not be biologically plausible (although see [51]). However, for the purposes of our model we are
only interested in the end product of a short-term memory circuit, and not in how the brain acquired such a circuit. Thus,
BPTT provides an efficient means of accomplishing this goal.
The memory circuit contains 64 neurons, and the vector of their firing rates r,,m, Obeys:

drmem
Is—at

= ~Imem t+ [Wmem I'mem + VVinp Ies + b+ nmem]+ (29)

where W,er, is @ matrix with the connection weights between the memory neurons (dimension: 64 X 64), Wi, is a matrix
of connection weights for the incoming CS inputs to the memory net (dimension: 64 x Ny,), 75 is the same synaptic time
constant described above, b is a unit-specific bias vector, and ng,.n, is a vector of [ID Gaussian noise with zero mean and
variance 0.01 added during training. A linear readout of the activity of the memory network provides the memory repre-
sentation:

?cs = Wout Fmem> (30)

where W, is a readout matrix (dimension: N, X 64).

The weight matrices Winem, Win,, and W, as well as the bias vector b, are trained as follows. Every trial lasts for 3
seconds. On trial onset, a Boolean vector r. is randomly generated and provided as input to the network. The CS input is
provided for a random duration drawn uniformly from [0.5,2] seconds. The network is trained to output r. at all times for
trials that are 3 seconds long. We train the network for a total of 107 trials in batches of 100. We use mean square error
between the true r., and the output of the network 7., with a grace period 200 ms at the beginning of the trial where errors
are not penalised. We optimise using Adam [52] with default parameters (decay rates for first and second moments 0.9
and 0.999 respectively, learning rate 0.001). To facilitate BPTT, which does not scale well with the number of timepoints,
we train the memory network using a time step of 10 = At.

Finally, note that the mechanism for short-term memory employed here is through persistent activity. While other forms
of short term memory, including synaptic facilitation [53] and behavioral timescale mechanisms [54] exist, we utilize per-
sistent activity for our model as the most commonly reported mechanism.
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Supporting information

S1 Text. How does the RNN learn? Explores in detail the mechanisms through which the network solves delay condi-
tioning, including activity dynamics, the role of mixed representations, surprise-modulated learning, and the influence of
feedback weights and recurrence.

(PDF)

S2 Text. Three-factor Hebbian learning fails at stimulus substitution. Compares the predictive learning rule to Oja’s
and BCM rules, showing that classical Hebbian plasticity fails to support multiple associations or robust conditioning under
varying experimental conditions.

(PDF)

83 Text. Predictive coding and normative justification for the learning rule. Derives the predictive learning rule as
gradient descent on a stimulus substitution loss, providing a normative and biologically grounded justification for its struc-
ture and showing how it relates to predictive coding.

(PDF)

S1 Table. Parameter value justifications. These values apply to all simulations, unless otherwise stated. Note that volt-
ages, currents, and conductances are assumed unitless in the text; therefore capacitances have the same units as time
constants.

(TIFF)

S1 Fig. Variation across training runs. Each curve depicts a different training run. Bands represent the & SD across
stimulus pairs. (A) Expectation for each US after the network is presented only with the associated CS, averaged across
all pairs at different levels of training. (B) Distance between the true representation of the USs (r,s) and their decoded
representation F,; when presented only with the associated CS, averaged across all pairs at different levels of training.
(EPS)

S2 Fig. Impact of the number of stimulus pairs on delay conditioning. Learning paths for each CS-US pair for a sin-
gle experimental run. Each thin line tracks the expectation E for a single stimulus pair. Note that the paths do not increase
monotonically, which shows that there can be interference across pairs. The vertical read lines indicate the time at which
the average E across pairs (thicker green line) reaches 80% performance level.

(EPS)

S3 Fig. Impact of the similarity on stimulus representation on delay conditioning. Learning paths for each CS-US
pair for a single experimental run. Each thin line tracks the expectation E for a single stimulus pair. Note that the paths do
not increase monotonically, which shows that there can be interference across pairs. The vertical read lines indicate the
time at which the average E across pairs (thicker green line) reaches 80% performance level.

(EPS)

S4 Fig. Conditioning phenomena generalize to networks that learn multiple associations. For each of these phe-
nomena, a total of 16 US-CS associations were learned in each network. (A), (B) Extinction in a network with multiple
associations works as for a single association in Fig 4B, 4C. The onset of extinction is at trial 1000. Same for: (C) blocking
with multiple learned associations (compare to Fig 5B), (D) overshadowing (compare to Fig 5C) and (E) saliency effects
(compare to Fig 5D). Note that here salience s, = 1.4, and the stimuli are kept the same as in (D), showcasing the clear
effect of saliency: while before saliency effects, CS, stimuli were coming on top on average, after the CS; stimuli became
more salient, the trend is reversed. For (C), (D) and (E), individual colored lines correspond to different stimuli received by
the same network (e.g., CS; or CS,), and the average expectation across stimuli of the same kind (e.g., CS; stimuli) is

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1013672 November 13, 2025 22/ 25



https://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1013672.s001
https://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1013672.s002
https://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1013672.s003
https://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1013672.s004
https://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1013672.s005
https://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1013672.s006
https://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1013672.s007
https://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1013672.s008
https://doi.org/10.1371/journal.pcbi.1013672

. Computational
PLO}' Biology

with bold. In addition, stimuli pairings are 1 to 1, meaning that a certain CS; stimulus is always paired with a certain CS,
stimulus and no other.
(EPS)
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