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Abstract

Signals representing the value assigned to stimuli at the time of choice have been repeatedly observed in ventromedial
prefrontal cortex (vmPFC). Yet it remains unknown how these value representations are computed from sensory and
memory representations in more posterior brain regions. We used electroencephalography (EEG) while subjects evaluated
appetitive and aversive food items to study how event-related responses modulated by stimulus value evolve over time. We
found that value-related activity shifted from posterior to anterior, and from parietal to central to frontal sensors, across
three major time windows after stimulus onset: 150–250 ms, 400–550 ms, and 700–800 ms. Exploratory localization of the
EEG signal revealed a shifting network of activity moving from sensory and memory structures to areas associated with
value coding, with stimulus value activity localized to vmPFC only from 400 ms onwards. Consistent with these results,
functional connectivity analyses also showed a causal flow of information from temporal cortex to vmPFC. Thus, although
value signals are present as early as 150 ms after stimulus onset, the value signals in vmPFC appear relatively late in the
choice process, and seem to reflect the integration of incoming information from sensory and memory related regions.
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Introduction

A growing consensus in neuroscience suggests that simple choices

are made by first assigning values to the stimuli under consideration

and then comparing those values to select the best one [1–7]. Neural

signals associated with the value assigned to stimuli at the time of

choice have been reported both with electrophysiology [8,9] and

human neuroimaging [10–21]. Converging data from these

techniques, as well as reports of impaired choice behavior in

patients with focal brain lesions [22], suggest that explicit value

representations in ventromedial prefrontal cortex (vmPFC) guide

simple choices.

A critical open question is how stimulus value signals are

computed in the vmPFC. One natural hypothesis is that the

vmPFC receives multimodal information about stimulus attributes

from more posterior sensory and association cortices, and then

integrates this information into an overall stimulus value prior to

choice [2]. This idea is motivated by previous studies showing that

value signals in vmPFC can represent a variety of value attributes

[9,12,13,17,19], together with the known network of connections

between vmPFC and sensory [23–25] and limbic [26–28] cortices.

We used electroencephalography (EEG) together with a novel

statistical analysis approach to quantify the dynamics of value-related

neural activity while subjects evaluated appetitive and aversive food

items. Based on the findings above, we hypothesized that stimulus

value activity appears first in parietal and temporal areas, and that it

emerges in the vmPFC relatively late in the valuation process.

We used EEG, rather than BOLD fMRI, because behavioral

evidence shows that subjects can assign values to basic stimuli in

less than 1000 ms [29], which makes the low temporal resolution

of fMRI ill-suited to examine this problem. In contrast, the

combination of EEG recordings with recent advances in signal

processing and source reconstruction offers the ability to measure

signals with high temporal resolution without excessive sacrifices in

spatial localization.

Methods

Subjects
Twenty-three subjects (ages 18–40, 18 males) were recruited

from the local Caltech community. All subjects were right-handed

and had normal or corrected-to-normal vision. Six subjects were

excluded from further analyses on the basis of predefined exclusion

criteria: two exhibited restricted or unusual food preferences

(vegetarian and/or dislike of snack foods), two reported confusion

over task instructions during exit debriefing, and two exhibited

EEG artifact (either the alpha wave was inseparable from evoked

responses, or there were channels with persistent high variability

and artifact ($100 mV) after data cleaning). Subjects provided

written consent prior to participation. All procedures were

reviewed and approved by Caltech’s Institutional Review Board

(IRB).

Stimuli
Subjects were presented with color images of 60 food items

(5766432 pixels, subtending 8.6u66.8u of visual angle) presented

on a black background (Figure 1). The specific food items were
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selected on the basis of prior behavioral data to span a wide range

of desirability: from strongly disliked to strongly liked. Examples of

appetitive items include snack potato chips and candy bars.

Examples of aversive items include canned meats and baby foods.

Task
Subjects did not eat for at least two hours prior to the

experiment. The experiment consisted of three parts (Figure 1A).

First, subjects played a Becker-DeGroot-Marschak (BDM)

bidding task [30]. In this part of the task subjects were given $3
in cash and had to place bids for the opportunity to either eat or avoid
having to eat the different food items at the end of the experiment. As
part of the consent process, subjects agreed to eat whatever food item,
if any, they received from the auction procedure at the end of the
experiment. For each of 60 trials (one per food item), subjects were
shown a food item and had to bid between $-3 and $3, with negative bid
values indicating the amount of money that they demanded in order to
eat a disliked item, and positive bid values indicating the amount that
they were willing to pay to eat a liked item. A random bidding trial was
selected at the end of the experiment and the outcome of that trial was
implemented using the rules described below. Note that, as a result,
subjects did not have to worry about spreading their $3 budget over
different items.

The rules of the BDM are as follows. Let b denote the subject’s

bid for a particular item. After the experiment, a random number

n is drawn with equal probability from the distribution of $-3 to $3.
If n is positive and b$n, the subject pays n and receives the food

item; if b,n, the subject does not receive the food item but does

not pay. If n is negative, when b#n the subject pays n and avoids

eating the food item; otherwise, the subject does not pay but must

eat the food item. This auction has the useful property that the

approximate optimal strategy is to bid exactly one’s willingness-to-

pay for an item, since the actual price is determined by the

random number n rather than the subject’s bid. Thus, bids from

this auction provide a good measure of the value (positive or

negative) assigned to consuming each item. This approach has

been used with success in several prior studies of reward processing

[10,14,15].

Second, subjects participated in a liking-rating task. At this stage

the EEG cap was positioned and adjusted as described below, and

EEG activity was recorded while they indicated their preference

for each of the same 60 items using a 4-point scale (Strong Dislike,

Weak Dislike, Weak Like, Strong Like). This task consisted of 3

runs of 240 trials each, for a total of 720 trials. The 60 food items

were presented randomly interleaved four times per run. Each

item was shown for a maximum of 2 s and subjects had to enter a

liking rating within this time frame. Subjects were asked to

respond as quickly and accurately as possible before the image

disappeared. They entered their responses using a keyboard, with

two responses assigned to left middle and index fingers, and two

assigned to right middle and index fingers (order counterbalanced

across subjects). Subjects completed a short practice block of the

liking-rating task before the actual EEG recordings began. Median

RT was calculated cumulatively during each run, and the duration

of the inter-trial interval (ITI) was iteratively adjusted to 3*

median(RT). This procedure was used to make sure that all

decision-making computations were completed before the start of

the next trial. Given the relative length of stimulus presentation,

and the concomitant difficulty in maintaining fixation, runs were

subdivided into short blocks with intervening self-paced breaks.

During the task subjects were asked to maintain central fixation

and minimize eye movements and blinks, and their performance

was monitored with the recording equipment. The three runs were

separated by 10-minute breaks.

Third, the outcome of the BDM auction was implemented by

the computer. In the last 10 minutes of the experiment, the

experimenter paid the subject and observed the subject eating the

food item, if necessary.

EEG Data Acquisition and Pre-Processing
EEG data was collected using a 128-channel HydroCel

Geodesic Sensor Net (Electrical Geodesics, Inc., Eugene, OR),

with AgCl-plated electrodes in fitted sensor nets. Evoked brain

potentials were digitized continuously at a sampling rate of

1000 Hz, filtered with 400 Hz low-pass and 0.1 Hz high-pass cut-

off. Vertex electrode Cz served as reference during recording.

Impedances for all channels were kept below 50 kV throughout

the experiment, with adjustments during the 10-minute breaks.

Although these re-adjustments could potentially affect signal

quality across runs, slow voltage drifts associated with increased

impedance minimally distort the averaged ERP and were cleaned

from the data during artifact removal (see below).

Data pre-processing was performed offline using the EEGLAB

toolbox [31] for MATLAB (Mathworks, Inc., Andover, MA).

Following import, data were re-sampled to 500 Hz, re-referenced

to an average reference, and notch filtered at 60 Hz. Epochs for

each trial were extracted for a time window of 2300 ms (100 ms

pre-, 2200 ms post), time-locked to the stimulus onset. The ERP

data were sorted into conditions based on the subject’s four

possible liking ratings (Strong Dislike to Strong Like).

Since subjects’ ratings generally showed an asymmetrical distri-

bution (Figure 2B), traditional artifact removal techniques based

on trial rejection are suboptimal for this dataset. Given this, we

identified and removed experimental artifacts using independent-

components analysis (ICA), implemented via second-order blind

identification (SOBI) [32,33]. Like other blind source separation

algorithms, SOBI enables the effective identification of artifactual

components, which can be removed while leaving the overall

number of trials in each condition intact [33]. Specifically, SOBI

linearly ‘‘unmixes’’ the EEG data into a sum of temporally

Figure 1. Experimental stimuli and procedure. (A) Experimental
procedure. Part I: subjects placed self-paced bids for the opportunity to
eat or avoid eating 60 different food items. Part II: subjects performed a
liking-rating task for the same food items via a 4AFC button press
(Strong Dislike, Weak Dislike, Weak Like, Strong Like) while their EEG
responses were recorded. Part III: a randomly selected bidding trial was
implemented that determined which food, if any, subjects had to eat.
(B) Sample stimuli, bidding task screen. (C) Sample stimuli and liking-
rating task screen (Part II).
doi:10.1371/journal.pone.0021074.g001
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correlated and spatially fixed components, which can be classified

as artifactual or non-artifactual based on their power spectra, scalp

topographies, and activity. Task-related non-artifactual compo-

nents are characterized by clear stimulus- or response-locking and

meaningful scalp topography, whereas artifactual components

reflect blinks, eye movement, muscle activity, sensor noise, and

slow voltage drifts. By projecting only non-artifactual components

back onto the scalp, it is possible to obtain artifact-corrected brain

signals [34]. This approach is therefore unlikely to distort the

temporal structure of the data to the same extent as conventional

FIR filtering [35].

Given our interest in source reconstruction, artifacts related to

eye movements and blinks present a particular concern, as they

may be incorrectly projected onto the ventral prefrontal region of

interest. These movements produce highly stereotyped patterns

of activity at electrodes near the eyes: for example, eye blink is

characterized by a large deflection in sensors immediately above

the eyes (Figure 3B, left). Likewise, horizontal saccades are

associated with lateralized activity in sensors near the orbits [36].

Although eye movements and blinks were not directly measured in

our experiment, we were able to identify and remove patterns

consistent with these artifacts using ICA (Figure 3). Trial-by-trial

data from a frontal sensor (Figure 3A) in one subject (PXM) shows

clear deflections during the period after response (black line),

visible as a large deflection in the average evoked response

(Figure 3B, right). In this subject and others, ICA isolated a

component with the stereotyped scalp distribution of eye blink

(Figure 3C), which also showed trial-by-trial activity consistent

with blinks. Removal of this and other artifactual components

produced a cleaned data set isolating brain-related activity

(Figure 3D–E).

From this cleaned data, we then constructed the datasets used in

our analyses. First, we constructed a stimulus-locked data set of

epochs of 1100 ms (100 ms pre-, 1000 ms post-) that were

baseline-corrected to the pre-stimulus period, and sorted into

experimental conditions based on each subject’s liking ratings. We

also created an alternative response-locked dataset that was

conducted on the same data by extracting 600 ms epochs (2400

to 200 ms) aligned to the response time. To avoid any confounds

related to average decision-making computations, this data set was

also baseline-corrected to the 100 ms pre-stimulus period prior to

the extraction of response-locked epochs.

Mixed Effects Linear Regression Analysis
To characterize the time course of value signal computations,

each subject’s data were separately entered into a linear regression

analysis. Evoked data for each trial between 100 and 1000 ms

post-stimulus-onset were integrated over 50-ms windows for each

channel. The EEG responses for each of the 128 sensors618 time

windows were then entered into a linear regression model of the

form

ysensor,window~b0zb1 � Preferencezb2 � Saliencyze

where the dependent variable ysensor,window consists of the trial-by-

trial data (in mV) for a particular sensor and time window, and b0

is the average activity in the sensor. The Preference covariate

measures the underlying value of the item, as measured by the

liking rating, which was coded from 1 ( = Strongly disliked) to 4

( = Strongly liked). The Saliency covariate measures the strength of

preference, regardless of valence, and it is coded as 1 ( = Weakly

liked or disliked) and 2 ( = Strongly liked or disliked). (Note that

‘‘saliency’’ in this context is analogous to arousal, rather than

perceptual saliency.) We included the saliency covariate to take out

the components of the signal that are related to saliency (as in

[14]), which increases the statistical power of the linear model to

identify value-related activity. The response-locked data were

modeled in a similar fashion from 2400 to 200 ms, but with

smaller windows of 40 ms due to the shorter epoch length.

In each case, the linear regression analysis produced a map

of estimated regression coefficients for every sensor, time window,

and subject. We aggregated these maps into mixed-effect group

estimates by computing one-sample t-tests versus zero across

subjects for each sensor and time window. Given that the pre-

ference and saliency regressors were not fully orthogonal for all

subjects, we also estimated a version of this model in which the

preference regressors were orthogonalized to the saliency regres-

sors.

Given the large number of separate tests (128 channels * 18 time

windows), this analysis presents a significant multiple comparisons

problem. Because the false discovery rate (FDR) is often overly

conservative in multichannel ERP data [37], we corrected for

multiple comparisons using permutation tests [37,38]. This was

implemented by re-running the linear models for every possible

permutation of the 4 condition labels (4! = 24). The t-statistics from

each permuted regression were then sorted in ascending order,

and the observed values from the actual data compared to this

distribution of values. Values greater than or equal to the highest t

values, and less than or equal to the lowest t values, were

considered as surviving multiple comparisons correction with a

threshold of p = 0.04 (one-tailed). Given the small number of

permutations possible, in practice this meant that in order to

survive correction the observed data had to fall at the extreme end

of the permutation distribution.

Finally, we also estimated an additional linear mixed-effects

model to compare the coding of value in the appetitive and

aversive categories. Similar to above, the EEG data were entered

into a linear regression with a constant term, a predictor for

Figure 2. Behavioral data. (A) Comparison of bids and liking ratings.
Although individual subjects (markers) varied in their utilization of the
bidding range, there was a strong logistic relationship between bid
values and preference ratings (thick line, average of individual fits). (B)
Aggregate response histogram. (C) Average median RTs by liking rating.
doi:10.1371/journal.pone.0021074.g002
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saliency, and predictors for preference modulated by positive

valence (0 = Disliked, 3 = Weak Like, 4 = Strong Like) and

negative valence (0 = Liked, 1 = Strong Dislike, 2 = Weak Dislike).

Thus, the modulators indicated both magnitude and valence for

positive and negative preference.

3D Source Reconstruction
We performed exploratory distributed source reconstruction of

the EEG signals using SPM8 (Wellcome Department of Imaging

Neuroscience, Institute of Neurology, London, UK). To look for

source activity that modulated the EEG signal by preference, we

computed the contrast waveform in each subject using a linear

contrast of the form [23 21 +1 +3], which weights the data to

find monotonic increases in response with increasing preference.

(These values are arbitrary, with the only restrictions being

hat they sum to zero and correspond to equal, monotonically

increasing steps between levels. Note that this construction is

commonly used to test for linear trends.) The individual wave-

forms were then aggregated using a group inversion source

reconstruction algorithm that models hundreds of small patches on

the cortical sheet as potential sources [39]. Whereas single subject

reconstruction optimizes both the priors and estimated sources,

group inversion applies the additional constraint that the same set

of sources must explain responses in all subjects [39,40]. Group

analysis then simply entails passing the source reconstructions

from individual subjects to a second-level ANOVA model, from

which statistical parametric maps (SPM) of significant group

activity can be obtained.

A key precondition for such group analyses is that all subjects’

reconstructed activity must be within the same source space. In

our data, this was ensured via use of a ‘‘canonical mesh’’ based on

SPM’s template head model, derived from the MNI brain. Sensors

were coregistered with the MRI coordinate system using a gene-

ric template of EGI sensors and fiducials provided with the

SPM software. Additionally, the remaining sensor locations were

matched to the cortical mesh using an iterative alignment

Figure 3. Artifact removal via independent component analysis (ICA). (A) Trial-by-trial activity from a frontal sensor (E17, left) in a subject
(PXM) with excessive blinking, sorted by reaction time. This subject’s pattern of blinking after the response creates large positive deflections at this
sensor following key press (black line). (B) Topographic scalp representations at 1042 ms (left) show a stereotyped frontal pattern consistent with eye
blink, visible as a large deflection in the ERP (right). (C) ICA analysis extracts a component corresponding to the eye blinks, as indicated here by the
scalp topography. Such components are also visible in the data of other subjects with less obvious artifacts in their EEG data (7 subjects shown here).
The polarity of the independent component is arbitrary. (D) PXM’s data following ICA cleaning. In contrast to the raw data, the major peaks now
reflect brain-related activity. (E) Corresponding brain-related ICA components in PXM and the other depicted subjects.
doi:10.1371/journal.pone.0021074.g003
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algorithm. The source space was modeled using a boundary

element model, in which the different tissues of the head (e.g.,

cerebrospinal fluid, skull, skin) are approximated by closed triangle

meshes with different conductivity values [41].

The output of the source reconstruction for each subject

consisted of predicted time courses of source activity in all

potential sources across the entire epoch length (e.g., 2100 to

1000 ms for stimulus-locked data). We could then test for

significant sources of activity across subjects by computing an F

test on the level of activity in each source at each time window of

interest. Note that because source reconstructions were performed

on the parametric difference waveforms, and the polarity of

evoked potentials is not necessarily meaningful, the contrast of

interest was an F statistic. Significant sources in each time window

of interest were visualized in terms of maximal intensity projection

(MIP) of the F statistic, thresholded with family-wise-error (FWE)

correction at p,0.05. FWE-corrected F values for each cluster of

source activity in the stimulus-locked analysis, and corresponding

MNI coordinates, are displayed in Tables S1, S2, S3.

To validate this analysis, we also performed localizations for

evoked responses with known cortical sources, including the visual

evoked potential (VEP) and movement-related cortical potential.

The procedure was largely similar, but used waveforms averaged

across all conditions (VEP), or by motor response hand. Statistics

were calculated for time windows of 100 to 150 ms after stimulus

onset and 2100 to 0 ms pre-response, respectively, using an

uncorrected threshold of p,0.00005.

We can also employ the source reconstruction data as a ‘‘virtual

electrode.’’ This allows us to read out the activity associated with

each source over the time course of the trial. For select regions of

interest (ROIs), the time course of each maximal intensity

projection (MIP) was computed within each subject by using

forward modeling as implemented in SPM8, with the time course

for each XYZ coordinate of the ROI calculated separately and the

resulting responses averaged.

Causal Connectivity Analysis
We performed a functional connectivity analysis of the EEG

signals identified by the 3D source reconstruction using Granger

causality [42,43]. This methodology compares two simultaneously

measured time-varying signals X and Y, and considers signal X to

be ‘‘causal’’ if past information about X improves prediction of

signal Y.

In the three time windows identified by the linear regression, we

focused on a small subset of the sources localized by the distributed

reconstruction: (1) 150–250 ms, left lingual gyrus (LG) and right

superior temporal gyrus (STG); (2) 400–550 ms, bilateral vmPFC

and left BA46; and, (3) 700–800 ms, right intraparietal sulcus

(IPS). These areas were specifically chosen due to their high

statistical significance in the source localization, known connec-

tivity with vmPFC, and proposed role in sensory processing or

stimulus valuation.

For each source, a region of interest (ROI) was defined from the

second-order group analysis using dipole clusters surviving the

FWE-corrected threshold of p,0.05 (see Tables S1, S2, S3 for

cluster-level and local maxima). For each subject and ROI cluster,

a MIP time course was computed for each dipole in the cluster,

and these were then averaged to produce subject-level ROI

activations used in connectivity analysis. Although some research-

ers have used individual dipoles instead of overall ROI activation

to avoid averaging-related temporal smoothing [44], preliminary

examination of our data showed no advantage for individual

dipole activations, perhaps reflecting our use of an averaged

difference waveform for source reconstruction.

Granger causality analysis was performed using the Granger

Causal Connectivity Analysis toolbox (GCCA) [43] for Matlab. In

each subject, MIP activations for each ROI were extracted in 3

time windows that immediately followed the preference-related

responses in the ERP data: 250–400 ms, 550–700 ms, and 800–

950 ms after stimulus onset. The goal was then to investigate how

activity recorded during the windows associated with the

preference responses (e.g., 150–250 ms) affected Granger causal

connectivity in the subsequent window (i.e., 250–400 ms). Prepro-

cessing consisted of linear detrending, subtraction of the temporal

mean, and division by the temporal standard deviation. The data

across subjects were then combined into a single matrix, in which

each subject was treated as one ‘‘realization’’ of a single underlying

stochastic process, followed by removal of the ensemble mean and

division by the ensemble standard deviation.

A major assumption of Granger causality is covariance

stationarity (CS): i.e., that the mean and variance of the time

series do not change over time. To address the covariance non-

stationarity commonly present in EEG signals, we applied first-

order differencing to the data. We then performed two common

tests of covariance stationarity on the first-order differenced data:

the Augmented Dickey-Fuller (ADF) and KPSS tests. The ADF

test failed to reject the null hypothesis of the presence of a unit

root, and thus it cannot rule out the presence of non-stationarities.

In contrast, the KPSS test, which has a null hypothesis of no unit

root, did not reject the null hypothesis, implying no unit root.

These divergent results provide no clear evidence regarding

covariance stationarity, and additional differencing necessary for

convergence (5–6 iterations) would lead to interpretative difficulty.

Thus, the first-order differencing procedure was considered

sufficient to approximate the stationarity assumptions required

by the Granger connectivity analysis.

For each time window, the optimal model order was selected

using the Bayesian information criterion (BIC), corresponding to 6

(250–400 and 550–700 ms) or 7 (800–950 ms), a lag of 12–14 ms.

Significance was assessed using a threshold of p = 0.01, Bonferroni-

corrected. Validity was verified using the Durbin-Watson test,

which found no significant correlation of the residuals, and the

consistency test, which showed high consistency of the fitted model

with the correlation structure of the data (.95%).

Results

Behavioral Data
We verified that subjects’ preference ratings were consistent

with decision values during actual choices by comparing the

percentage of ‘‘Like’’ responses (both Strong and Weak) for each

food item to the bid values collected prior to recording. Although

subjects differed in their use of the full scale of possible bid values

(Figure 2A), their preference data was well-described by a logistic

regression: a one-sample t-test on the sensitivity of like responses

on bid value was highly significant (t(16) = 9.2, p = 961028). Thus,

the preference ratings were consistent with the decision values

assigned to foods at the time of choice.

The indifference point for the fitted logistic function showed a

slight negative bias (mean indifference point = $20.4). Though small,
this negative shift was highly significant across subjects (t(16) = 24.3,
p = 661024), suggesting that subjects were generally more willing

to pay to avoid foods they considered aversive than to obtain foods

they considered appetitive. However, since our comparison of

interest is the relative ordering of preferences rather than their

absolute magnitudes, this bias is unlikely to affect the EEG

analysis.

Dynamic Construction of Stimulus Values in VMPFC
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Comparison of the preference rating assigned to each food item

across subjects revealed a basic continuum from aversive to

appetitive, though with high inter-subject variability (Figure S1).

Given this high variability in preference rating, low-level image

features specific to the different food categories are unlikely to

account for differences in EEG response. In contrast to the high

variability between subjects, within-subject preference ratings for

each item were stable across the three experimental runs (F,1).

The preference ratings were divided among the four response

categories, with a larger proportion of ‘‘Strong Dislike’’ and

‘‘Weak Like’’ responses (Figure 2B). Median reaction times were

significantly faster for the strong, compared to weak, preference

conditions (Figure 2C), as indicated by a repeated-measures

ANOVA (F(3,48) = 42.2, p = 2610213). This inverted U-shaped

function of median RT by condition was confirmed by a contrast

analysis testing for a quadratic trend, which revealed a significant

effect (t(16) = 210.1, p = 261028).

Stimulus-Locked Analysis of the EEG Data
The first step of the analysis was to look for sensors at which

recorded activity correlated with the preference ratings at different

time windows, which enabled us to trace the dynamics of value

signals as they appear in different parts of the brain. The analysis

was conducted by estimating a mixed-effects linear regression for

each sensor and time window. For each subject, the data between

100 and 1000 ms post-stimulus-onset were integrated over 50-ms

bins to produce 18 time windows of activity for each sensor and

trial. The evoked activity (in mV) in each of the 128 sensors618

time windows was fed into a linear regression in which preference

was the main regressor of interest. The estimated coefficients for

each subject, sensor, and window were aggregated into mixed-

effect estimates by computing one-sample t-tests versus the null

hypothesis that the coefficient is zero in that sensor and time

window; all p-values were corrected for multiple comparisons

using permutation tests.

Three key patterns emerged from the analysis of preference-

related activity (Figure 4A). First, an initial wave of widely

distributed responses appeared around 150–250 ms, with the most

significant responses taking place in parietal sensors. This was

followed by another wave of responses around 400–500 ms that

included central, frontal, and anterior temporal sensors. Third,

around 700–800 ms there is restricted but significant activity in

the frontal sensors.

We characterized these patterns in more detail by identifying

sensors of interest (SOIs) in each time window, defined as sensors

in which activity was significantly modulated at p,0.01 by

preference. Figure 4B–D depict key SOIs for the different time

windows discussed above, as well as grand average waveforms for

the sensors, separated by condition. Note that in each case there is

clear separation of activity by response category during the time

window of interest.

Given the unbalanced distribution of preference ratings in most

subjects, we also estimated a version of the model with

Figure 4. Value signals in the stimulus-locked data. (A) Heat map
summarizing the results of the linear regression analysis in the 128
sensors and 18 time windows (each 50 ms long). Each box indicates the
p-value for a mixed-effects group estimate of the effect of liking rating
on the activity of a specific sensor during a specific time window.
P-values are corrected for multiple comparisons using a permutation
test. (B) ERP responses in parietal sensors during the 150 to 250 ms time
window. (C) ERP responses in central and frontotemporal sensors
during the 400 to 550 ms time window. (D) ERP responses in frontal

sensors during the 700 to 800 ms time window. In each case, the left
maps show the scalp distributions of t-values for the liking rating
variable in the linear regression in two- (top) and three-dimensional
(bottom) projections. The sensors of interest (SOIs) from which the ERP
is extracted are shown in the white boxes. ERPs were computed by
averaging waveforms first within and then across subjects. In each case
the ERP shows a parametric response that correlates with the liking
ratings during the time window highlighted in gray. In the 400–550 ms
window, the SOIs also included bilateral frontal and lateral sensors with
high negative t values.
doi:10.1371/journal.pone.0021074.g004
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orthogonalized regressors (see methods for details). This additional

analysis generated similar results: a t-test comparing the estimated

betas in the original and orthogonalized-regressors models (z

transformed to account for scaling) found no significant differences

between them (all ps.0.9). Therefore, all further analyses focused

on the original model.

The results for the saliency regressors are described and

discussed in Materials S1 and Figure S2. We also estimated an

additional regression model to compare the coding of valence for

appetitive and aversive items. Although this model has less

statistical power, the results suggest a similar pattern of activity

(Figure S3).

These results suggest a shifting pattern of preference-related

activity moving from posterior to anterior cortices over time, in

line with recent results on the coding of high- versus low-energetic

images of food [45]. However, since this analysis was carried out at

the sensor level, it lacked anatomical specificity about which

particular regions were responsible for the observed pattern. We

performed an exploratory examination of this question using a

distributed source localization technique.

Distributed Source Reconstruction: Stimulus-Locked
Analysis

To explore the possible neural sources underlying the evoked

response, we used a Bayesian distributed source reconstruction

analysis. A useful feature of the analysis is that it allowed us to

localize the sources of the signal of interest in different time

windows, one individual at a time, and then aggregate the

individual activations to construct statistical parametric mappings

of the different sources at the group level.

Note that, given the uncertainty surrounding available recon-

struction techniques, these results are exploratory and must be

interpreted with caution. As described in the Methods, care must

be taken to remove ocular artifacts, which otherwise may be

incorrectly projected onto the ventral prefrontal region of interest.

Additionally, individual variability in head shape, brain structure,

and cortical folding can translate to large spatial uncertainty in

source localization. This is particularly true for our data, as

individual differences in head shape, sensor position, and brain

anatomy were not considered in our analysis. Instead, the sensor

data for all subjects were realigned into a canonical neuroana-

tomical space, limiting the spatial resolution of the source

reconstruction. These results should therefore be considered

rough estimates of the underlying sources, with unknown spatial

error.

Bearing in mind the exploratory nature of this technique, we

validated the source reconstruction methodology using two ERP

signals with well-known anatomical loci: the visual evoked

potential (VEP) and the movement-related cortical motor

potential. Figure 5 displays the ERP components and correspond-

ing sources with an F value of 30 or more, corresponding to a

statistical threshold of approximately p,0.00005, uncorrected.

(Note that this high statistical threshold accounts for the apparent

spatial precision of the sources in this and the following figures.)

Peaking 80 to 130 ms after stimulus onset (Figure 5A, top), the

earliest components of the VEP show response patterns consistent

with low-level visual processing, including sensitivity to visual

field location and image properties such as contrast [46]. Co-

localization of these signals with fMRI activation has found

sources in multiple visual areas, including striate and extrastriate

cortex [47]. Consistent with these results, our exploratory source

reconstruction showed sources throughout visual cortex, including

V1, inferior and middle occipital gyrus, and precuneus (Figure 5A,

bottom left). Using the source reconstruction data as a ‘‘virtual

electrode’’ to read out the modeled neural activity for one such

region (circled), the time course of the maximal intensity projection

(MIP) shows a pattern similar to the activity recorded across

occipital sensors (Figure 5A, right).

Although a number of movement-related cortical potentials

have been identified in the time leading up to response [48–50],

we focused on the late period approximately 2100 ms prior to key

press. The onset of motor response in this time window is

commonly associated with a focal peak in movement-related

activity (Figure 5B, top), visible in recordings from subdural

electrodes over the corresponding hand motor representation [51].

Our preliminary source localization within this window likewise

Figure 5. Validation of the distributed source reconstruction technique. Note that the spatial resolution of reconstruction is limited due to
inherent constraints and the realignment of subjects into a common neuroanatomical space. Depicted spatial precision reflects the high statistical
threshold used: F$30, corresponding to p,0.00005 (uncorrected). (A) Visual evoked potential (VEP). Top: Topography and waveform of the VEP
recorded from occipital sensors. The time window used for source reconstruction (100–150 ms) is shown in gray. Bottom: Sources of the VEP included
visual areas such as primary visual cortex (V1), middle and inferior occipital gyrus, and precuneus (PCun). Activity from one maximal intensity
projection (MIP) (circled) is highly similar to the original EEG data. (B) Movement-related cortical motor potential. Top: Topography and waveform of
the motor potential recorded from parietal sensors, for the comparison of contralateral versus ipsilateral motor output. Bottom: Time courses of
sources localized to M1 (circled) show a similar contra-ipsi pattern.
doi:10.1371/journal.pone.0021074.g005
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revealed activity in regions including primary motor cortex (M1,

circled), for which MIP time courses showed the same contra .ipsi

pattern seen in the original data (Figure 5B, bottom).

Thus, for established evoked potentials, exploratory source

reconstruction localizes activity to areas consistent with known

anatomical sources. Proceeding with source localization of our

data, inference was carried out at a FWE-corrected threshold of

p,0.05 and extent cluster size of 5 voxels. The same threshold was

used to generate all figures. Again, these results must be

interpreted with care given the coarse spatial resolution of the

reconstruction technique. Nonetheless, the sources surviving our

strict statistical threshold (Figure 6, Tables S1, S2, S3) are highly

consistent with previous neuroimaging results [10–21].

In the earliest time window, from 150 to 250 ms, activity was

localized primarily to bilateral ‘‘clusters’’ in temporal and parietal

regions. Consistent with the scalp distribution of activity, these

included a number of regions of parietal cortex, such as

intraparietal sulcus and precuneus, as well as structures in the

occipital, inferotemporal, and medial temporal lobes (see Table S1

for a complete list). These early sources are interesting because

these areas have been widely associated with attention, memory,

and object recognition based on the visual stream. In addition,

sources of interest were also identified in inferior frontal gyrus

(IFG) and anterior insula.

In the middle time window, 400–550 ms, activity continued to

be localized to areas of the temporal lobe, with increasing activity

in ventromedial prefrontal cortex, subgenual cingulate, and

ventral striatum, structures known to be associated with coding

of stimulus value (Table S2). Intriguingly, during this period a

source was also visible in a region of dorsolateral prefrontal cortex

overlapping with Brodmann area 46, the activity of which has

previously been shown to correlate with goal values [10,11] and to

be implicated in the choice process [12,13].

Finally, during the 700–800 ms window, sources were visible

primarily in the vmPFC and anterior frontal cortex, with some

activity in insula and intraparietal sulcus (Table S3). Given that

this period coincides with the median observed reaction time,

these sources may reflect a shift to response preparation and

output.

Causal Connectivity Analysis
Both of the previous analyses suggest a dynamic pattern for the

computation of the value signal that begins in the temporal lobe

and spreads over time to the vmPFC. We carried out a more

formal test of this pattern using Granger causal connectivity

analysis [43] on the neural activity projected from sources

identified in the distributed reconstruction.

As a large number of dipole clusters survived the statistical

threshold for exploratory source localization (Tables S1, S2, S3), to

include all sources would have produced a model of extreme

complexity that would be difficult to interpret. Therefore, we

chose to focus instead on a small subset of sources with known

roles in sensory processing or stimulus valuation and high

statistical significance in the distributed reconstruction. Given

the coarse spatial resolution of the localization, these regions of

interest (ROIs) include a large number of dipoles from adjacent

brain areas, and should not be treated as precise anatomical

regions. Rather, these sources represent broad cortical divisions for

which connectivity analysis can provide an exploratory measure of

causal interrelationship.

In particular, we looked at the three time windows suggested

by the linear regression analysis, selecting regions from the source

reconstruction associated respectively with sensory processing,

stimulus valuation, and motor planning. In the early window

(150–250 ms), one chosen cluster (L LG) contained dipoles in

lingual, fusiform, and parahippocampal cortex, regions known to

be involved in visual object recognition [52]. Another ROI (R

STG) spanned sections of right superior temporal sulcus, angular

gyrus, and supramarginal gyrus, associated with visuospatial

awareness and multimodal sensory convergence [53]. During the

400–550 ms window, we selected sources implicated in decision-

making: left and right vmPFC and BA46. Finally, for the late 700–

800 ms time window, intraparietal sulcus (R IPS) was chosen for

its role in transforming goal values into motor output [54]. We

then extracted activity measures from these same areas for the

Figure 6. Exploratory distributed source reconstruction, stim-
ulus-locked data. Depicted spatial precision reflects the high
statistical threshold used: p,0.05, FWE-corrected. (A) Glass brain
displays showing the maximum intensity projections (MIP) of all
sources for each time window. (B) Representative sources of interest
for each time window superimposed on the MNI brain. Top: 150 to
250 ms. Prominent sources include: fusiform and lingual gyrus (FG, LG),
middle and superior temporal gyrus (MTG, STG), and parahippocampal
gyrus; insula (Ins), associated with gustatory processing; and inferior
frontal gyrus (IFG). Middle: 400 to 450 ms. While posterior sources are
still visible, sources associated with value computation emerge within
this time window, including ventral striatum (VStr), Brodmann area 46
(BA46), and ventromedial prefrontal cortex (vmPFC). Bottom: 700 to
800 ms. In this time window, overlapping with average median RT
(710 ms), there is continued activity in subgenual cingulate (Cg25) and
intraparietal sulcus (IPS), as well as emerging activity in middle and
superior frontal gyrus (MFG, SFG). See also Tables S1, S2, S3.
doi:10.1371/journal.pone.0021074.g006
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subsequent time windows: 250–400 ms, 550–700 ms, and 800–

950 ms. Because this last period falls after the median average RT,

in-depth analysis focused on the first two time windows. ROIs

were defined from dipole clusters in the group analysis surviving

an FWE-corrected threshold of p,0.05 (see Tables S1, S2, S3).

Average MIP time courses were extracted from these ROIs in

each subject, and the resulting matrix of MIP activations by

sources was entered into a causal connectivity analysis. The basic

idea of the Granger causal connectivity analysis is to test if activity

in each area for a given time window ‘predicts’ activity in other

areas in the follow-up time period.

Figure 7A displays all connections for which Granger causality

was significant at p = 0.01, Bonferroni-corrected, across all three

time windows of interest. Following the earliest preference-related

activity, 250 to 400 ms (orange lines), there are connections to

bilateral vmPFC from a left temporal ROI encompassing lingual,

parahippocampal, and fusiform gyrus (L LG), as well as within

right parietal areas. The middle 550–700 ms period (dotted cyan

lines) is characterized by recurrent inputs from vmPFC to

temporal cortex, and the emergence of BA46 as a causal source

to vmPFC and right temporoparietal regions (STG, supramar-

ginal, and angular gyrus). Finally, in the late window following

response, temporoparietal and parietal regions play a causal role in

activity in BA46 and vmPFC. Also notable is the continued

interplay between left and right vmPFC across the time course of

response.

The causal dynamics of these time windows were formally

quantified via measures of causal flow (Figure 7B) and unit causal

density (Figure 7C). Causal flow, defined as the difference of in-

flow versus out-flow, gives a sense of the causal influence exerted

on the system by each node. For example, from 250–400 ms,

temporal and temporoparietal regions are major causal sources;

whereas, right vmPFC is a causal sink, receiving inputs from left

vmPFC and LG. Likewise, in the later 550–700 ms period, BA46

shows a strong positive causal flow, reflecting its increased activity

as a causal source. Unit causal density for a given node consists of

its summed causal interactions, and can be used to identify causal

hubs. In the 550–700 ms period, the vmPFC ROIs show the

greatest unit causal density, reflecting their many connections.

These results support the idea that early value-related activity

encoded in the temporal lobe is passed over time to vmPFC, with

the information computed in vmPFC then feeding back to

posterior regions. Additionally, the model shows a causal role for

BA46 connections with vmPFC and temporoparietal regions.

Response-Locked Analysis of EEG Data
Given that the source reconstruction shows increasing activity in

vmPFC leading up to the time of response, one natural question is

how the ERP responses vary with reaction time. We first analyzed

this question by splitting the stimulus-locked data by median

latency, which revealed similar preference-related activity for fast

and slow RT trials (see discussion in Materials S1 and Figure S4).

A drawback of this approach is that it blurs response signals due

to the variation in RTs across subjects and trials. To address this

limitation we repeated the previous analysis using response-locked

data with a 400-ms time window preceding response.

Figure 8A displays the results of the mixed-effects regression

analysis. Significant linear effects are visible from roughly 2400 to

2160 ms prior to response. Consistent with the stimulus-locked

data, responses in this period were largely distributed across

parietal, anterior temporal, and frontal sensors. Scalp maps at

selected time points show a comparable topographic progression

from parietal electrodes to more central sensors, with sustained

preference-related activity at anterior temporal and frontal sensors

(Figure 8B, top). Grand average waveforms, displayed for a sample

window from 2400 to 2320 ms pre-response (Figure 8B, bottom),

also show ordering by preference rating.

Similarly, signal localization over 80-ms time windows pro-

duced roughly similar sources to those seen in the stimulus-locked

analysis, including areas of the lingual gyrus, superior temporal

gyrus, insular and inferior frontal cortex, and vmPFC (Figure 8C).

These data again support the idea that vmPFC responses reflect

the integration of information about stimulus attributes coming

from sensory and mnemonic structures, particularly in the

temporal and parietal lobes. Reconstruction of the response-

locked data also found a number of additional sources associated

with selection and planning of the motor response, including

regions of anterior, dorsal, and posterior cingulate cortex (2400 to

2240 ms), and premotor cortex (2240 to 2160 ms).

EEG Sources versus fMRI Localization of Value Signals
Separate source reconstructions of stimulus- and response-

locked data consistently localized value signals to the vmPFC.

How do these sources relate to the regions of interest defined in

fMRI? Although the spatial precision of EEG source reconstruc-

tion is too coarse to definitively address this question, a direct

comparison of the EEG sources to published fMRI data shows an

intriguingly similar locus of activity (Figure 9). The figure was

constructed by taking spherical masks (4 mm radius) around the

peak locus of activation in mOFC from three previous fMRI

studies of valuation ([12], green; [14], cyan; [10], blue). Masks of

right vmPFC from 400 to 550 ms and 700 to 800 ms with FWE-

corrected p,0.01 are displayed in red and yellow. (In all cases,

only the right hemisphere loci are shown for clarity.)

The vmPFC sources from EEG are in relatively close proximity

to the more spatially-precise fMRI data, suggesting activation of

roughly the same valuation areas in all of these experiments.

Interestingly, the nearest fMRI region of interest to the EEG

sources is that identified in Litt et al. (2010), which used a nearly

analogous task in which subjects evaluated appetitive and aversive

foods.

Discussion

A basic open question in decision neuroscience is how the value

signals that have been widely observed in vmPFC are actually

computed. We found ERP responses significantly associated with

value over three major time windows: 150–250 ms, 400–550 ms,

and 700–800 ms after stimulus onset. Across these three epochs,

the distribution of value-related activity shifted from posterior to

anterior, and from parietal to central to frontal sensors. Consistent

with this pattern, exploratory source reconstruction analyses

localized activity to vmPFC only from 400 ms onwards, with a

Granger connectivity analysis revealing significant causal connec-

tions between temporal and vmPFC sources. Source reconstruc-

tion of response-locked data was largely consistent with the

stimulus-locked localization, additionally finding activity in

cingulate and premotor cortex in the time leading up to response.

Together, these data identify a putative network of brain regions

for dynamic value computation, encompassing posterior cortices

and medial temporal lobe structures. Activity from 150–250 ms

after stimulus onset was localized to parietal and temporal lobe

structures, including fusiform, lingual, and parahippocampal gyri,

hippocampus, and intraparietal sulcus, as well as the inferior

frontal gyrus and insula. Although source reconstructions must be

interpreted with caution, given the individual variability in head

shape and brain anatomy, these sources match the known

anatomical connections of vmPFC [24,55], and also constitute
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Figure 7. Preliminary Granger causal connectivity analysis. Note that due to the coarse spatial resolution of the source reconstruction
technique, the selected regions of interest (ROIs) are not precise anatomical regions but rather represent broad divisions of cortex. (A) Model and
causal connectivity across 3 time windows of interest (orange: 250–500 ms, cyan dotted: 550–700 ms, magenta dashed: 800–950 ms). All displayed
connections are significant for a threshold of p = 0.01, Bonferroni-corrected. (B) Causal flow measures of the difference between the number of
outgoing and incoming causal connections. Large positive values indicate ‘‘causal sources,’’ nodes with strong causal influence on the system, while
negative values signify ‘‘causal sinks.’’ (C) Unit causal density measures of the summed causal interactions for a given node. High unit causal density
indicates the presence of a hub in the causal network.
doi:10.1371/journal.pone.0021074.g007
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plausible substrates for conveying sensory and mnemonic

associations into the value signal computation.

These results place a lower bound on the time course of value

signal computation, with preference-related activity as early as

,150 ms after stimulus onset. By separating the linear ordering

of preference from effects of saliency (Figure S2), this analysis

demonstrated that ERP components associated with early sensory

processing encode value information rather than stimulus saliency

alone.

Compared to responses in posterior cortices, localization of

evoked responses in vmPFC occurred relatively late, around

400 ms after stimulus onset. Again, these results are exploratory

and should be interpreted with care, given the abovementioned

spatial uncertainty in the reconstruction, as well as the potential

mislocalization of eye movement artifacts. Yet this time course is

consistent with the idea of integration across stimulus attributes,

which might be fed to the vmPFC over hundreds of milliseconds as

complex stimuli are perceived and associated semantic informa-

tion is retrieved from memory.

However, this long latency appears at odds with single-unit

recordings, which have reported value signals in vmPFC across the

time course of choice [8], and as early as 100–150 ms after

stimulus onset [56]. These discrepancies may reflect experimental,

technical, and functional issues. Experimentally, the studies of

Padoa-Schioppa and Assad used highly learned stimuli that were

depicted using simple geometrical color symbols. These features

of the experimental design are likely to have reduced the need

for stimulus attribute decoding and integration. Furthermore,

EEG represents the synchronous activity of tens of thousands of

neurons, whereas early value signals have been reflected in de-

creased firing rates of single neurons with already low spontaneous

rates [56], which would be difficult to detect in the evoked re-

sponse. Likewise, value coding that peaked within 500 ms of onset

was reported only for a few hundred neurons out of a sample of

nearly a thousand [8], again making it unlikely that such responses

would be detected in the aggregate EEG signal. Therefore, while

single neurons may encode value as soon as 150 milliseconds

following stimulus presentation, our data suggest that robust

responses across a large neural population occur relatively later.

Such an interpretation is also in line with findings from the

domain of visual perception, where it has been proposed that OFC

activity facilitates object recognition [57]. In this view, value may

be assigned to sensory attributes through multiple cycles of feed-

back between prefrontal cortex and more posterior sensory and

mnemonic structures. Although we failed to observe early value

signals in vmPFC, perhaps due to the technical and theoretical

issues stated above, the later large response could reflect the

culmination of this iterative process, in which diverse sensory

attributes are bound into a representation for value computation.

Our results are consistent with the known strong connectivity of

vmPFC to sensory areas [24,25,55], which put it in a privileged

position for integrating attribute information. Anatomically posi-

tioned close to olfactory cortex and gustatory regions of the insula

[25], vmPFC also features connections to visual inferotemporal

cortex [24], as well as memory-related structures such as the

amygdala, hippocampus, and entorhinal and perirhinal cortex

[26–28]. Combined with links to cognitive control regions such as

ACC [58] and DLPFC [23,59] these interconnections are

suggestive of the role of vmPFC as a value attribute integrator.

Supporting this idea, recent work using a binary probabilistic

Figure 8. Value signals in the response-locked data. (A) Heat
map summarizing the results of the linear regression analysis in the 128
sensors and 14 40-ms time windows. Each box indicates the p-value for
a mixed-effects group estimate of the effect of liking rating on the
activity of a specific sensor during a specific time window. P-values are
corrected for multiple comparisons using a permutation test. (B) Top:
Scalp distribution of t-values for the liking rating variable over time.
Bottom: ERP grand average waveforms for preference, 2400 to
2320 ms pre-response. (Because significant effects of preference were
largely restricted to the same electrodes over time, only this time
window is displayed as an example.) The ERP shows a parametric
response that correlates with the liking ratings during the time window
highlighted in gray. (C) Exploratory distributed source reconstruction
for the response-locked data. Identified sources were similar to those in
the stimulus-locked analysis. Activity was also localized to anterior and

dorsal cingulate cortex (ACC, dACC) and premotor cortex (PM), regions
known to be engaged in response selection and planning.
doi:10.1371/journal.pone.0021074.g008
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categorization task in fMRI suggests that vmPFC integrates

perceptual evidence encoded in ventral temporal cortex [60].

Further experiments currently being conducted in our laboratory

should further help to distinguish the temporal hallmarks of

stimulus valuation from those associated with choice.

Together, these data illustrate shifting networks of cortical

activity over the time course of stimulus valuation. The dynamics

of stimulus valuation across the brain are marked by a progression

from representation of sensory attributes to more abstract

conceptual codes for stimulus value.

Supporting Information

Materials S1 The supporting materials provide details of

supplementary analyses of saliency effects, the coding of appetitive

versus aversive value, and the variation of stimulus-locked ERP

responses with reaction time.

(DOC)

Figure S1 Inter-subject variability in food ratings. Foods are

sorted by mean rating on a 4-point scale from 1 (lowest) to 4

(highest). The median rating for each item is indicated by the

central mark, with the edges of the box delineating the 25th and

75th percentiles. Although there is a basic continuum from aversive

to appetitive, ratings varied tremendously from subject to subject.

(TIF)

Figure S2 Saliency signals in the stimulus-locked data. (A) Heat

map summarizing p-values for the mixed-effects group estimate of

the effect of saliency (Strong vs. Weak), corrected for multiple

comparisons using a permutation test. (B) Scalp distributions of

saliency-related activity, 250–450 ms. (C) ERP responses in

posterior (left) and anterior (right) sensors during the 3 time

windows associated with saliency effects. Note that the response

from 450–500 ms appears to reflect an asymmetric response to the

Strong Like condition, rather than a true saliency effect.

(TIF)

Figure S3 Coding of appetitive versus aversive value. (A) Scalp

topographies at 450 ms for the original analysis of linear

preference coding (left) versus positive (middle) and negative

(right) valence. (B) Heat maps summarizing the p-values of betas

from the mixed-effects regression on valence, for positive (top) and

negative (bottom) valence. Note that these analyses are not

corrected for multiple comparisons.

(TIF)

Figure S4 Split-latency analysis. For each condition and subject,

the median RT was used to divide trials into fast (,median) and

slow (.median) RTs. We then estimated the linear model

separately for both types of trials. (A) Corrected mixed-effects p-

value map for the sensors and time windows exhibiting activity in

fast- (top) and slow-RT (bottom) trials. (B) Corrected p-value map

for the paired t-test comparison of preference modulation in slow-

versus fast-RT trials. (C) Average waveform data for a single

sensor of interest (left, in green) that was chosen based on having

significant parametric responses for both the 400–550 ms time

window in fast-RT data, and the 700–800 ms window for slow-

RT data.

(TIF)

Table S1 Peak MNI coordinates, source reconstruction 150–

250 ms. Clusters surviving FWE-corrected threshold p,0.05

(F = 55.5) and cluster size threshold k = 5. In this and all other

tables of peak coordinates, bold indicates a cluster-level maximum,

with separate (.8 mm) maxima listed in plain type below. Because

of the relatively low spatial resolution of EEG reconstruction, the

source regions listed here do not precisely correspond to the

coordinates, but rather reflect the general location of source

activity within the specified cluster. *Denotes clusters used as

regions of interest (ROIs) in causal connectivity analysis.

(DOC)

Table S2 Peak MNI coordinates, source reconstruction 400–

550 ms. Clusters surviving FWE-corrected threshold p,0.05

(F = 56.5) and cluster size threshold k = 5. * Denotes clusters used

as ROIs in causal connectivity analysis.

(DOC)

Table S3 Peak MNI coordinates, source reconstruction 700–

800 ms. Clusters surviving FWE-corrected threshold p,0.05

(F = 55.9) and cluster size threshold k = 5. * Denotes clusters used

as ROIs in causal connectivity analysis.

(DOC)
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